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Preface

This book covers engineering mathematics in a comprehensive, complete, and up-to-date manner. Itis
designed to teach engineering, physics, mathematics, computer science, and alied students to the areas
of applied mathematics that are most useful for solving real-world problems. This work will give
students a foundation in mathematical concepts, allowing them to solve mathematical, scientific, and
related engineering problems. Furthermore, the content will include engineering applications and
mathematical concepts required for progression into a variety of Incorporated engineering degree
programs. It is commonly acknowledged that a student's ability to apply mathematicsisacritical factor
in determining future success. The content is divided into the following five sections:

Functions of Several Variables
Matrices

Ordinary Differential Equations
Partial Differential Equations

5. Laplace Transforms

Eal A

Furthermore, every chapter is maintained as autonomously as possible (If necessary, any requirements
for understanding the specific content of earlier chapters are spelled out at the beginning of each one).
We provide the instructor with the greatest amount of freedom to choose the materials and modify them
to suit their needs. The current state of engineering mathematicsislargely dueto the contributions made
by the book. With a contemporary approach to the topics mentioned above, this book will get students
ready for both the responsibilities of today and the future. We give students the resources and learning
aids they need to build a solid foundation in engineering mathematics, which will benefit them in both
their future academic endeavours and professional endeavours. General Features of the Book Include:

» Examples are kept smple to make the book easily teaches.

» Independence of chapters and sections to provide for freedom in customizing courses to meet
individual needs.

» Presentation is self-contained, with the exception of a few well-defined instances when a proof
would go beyond the bounds of the book and a citation is provided in its place.

» A smooth transition from easy to harder content to guarantee a positive teaching and learning
environment.

» To assist students in mathematics, engineering, statistics, physics, computer science, and other
fields, contemporary standard notation is available in books, journals, and other courses. In addition,
we aimed to create a book that would serve as a comprehensive, authoritative, and easily accessible
resource for learning and teaching applied mathematics. This would remove the need for laborious
online searches or lengthy journeysto the library to get specific reference materials.

Further comments and suggestionsfor improving the book will be gratefully received.

(Dr. Subhabrata Mondal) 05-12-23
Assistant Professor, Swami Vivekananda University,

Kolkata, West Bengd, India
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Chapter 1
Functions of Several Variables

1.1 Sets in n-dimensional Real Space
The set R™ is defined by {(xq, x5, ..., X,): X1, X5, ..., X, € R}. In particular,

R? isthe set of al order pair {(x,y):x,y € R}. Thusapoint X in R? is defined
by X = (x,y) where x,y € R. Similarly a point X in R3 is defined by X =

(x,y,z) wherex,y,z € R.
1.1 Cdl in R?

Let a,b € R with a < b and ¢,d € R with ¢ < d.
The set of al ordered pair {(x,y) € R%:a<x <bc< ¢

y < d} is said to be an open cell in R* and the set of all 1

ordered pair {(x,y) E R*>:a <x < b,c <y <d}issad
to be aclosed cell in R2.

<
v

1.2 Discin R?

Let a,b € R and r > 0. The set of al ordered pair
{(x,y) ER?*:(x —a)?+ (y—b)? <r?} is said to be an
open disc in R? about (a, b) and the set of al ordered pair
{(x,y) ER%:(x —a)?*+ (y—b)? <r?} is said to be a
closed discin R? about (a, b).

v

1.3 Open ball in R3

Let a,b,ceR and r>0. The set of al ordered par {(x,y,2) €
R3:(x —a)? + (y — b)? + (z — ¢)? < r?} issaid to be an open ball in R3 about
(a,b,c).

1.4 Neighbourhood of a point

Let (a,b,c) €ER (or (a,b) € R?). A set S S R3 (or R?) is said to be a
neighbourhood of (a, b, ¢) (or (a, b)) if there exists an open ball (or open disk)
about (a, b, c) (or (a, b)) such that the open ball (or open disk) is asubset of S.
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° Note:

(i)  Anopendisk about (a,b) € R? isalso aneighbourhood of (a, b).

(i)  An open cel about (a, b) is a rectangular neighbourhood of (a, b), i.e.
{(x,y) ER%|x —a| < 6,|y —b| <6} where § > 0 is a neighbourhood of
(a,b).

(i) {(x,y) ER:ZO<(x—a)’+(y—b)><r?}and{(x,y) ER%:0 < |x —
al <6,0<|y—>b|<d}whered > 0, are deleted neighbourhoods of (a, b).
(iv) Anopenbal (a,b,c) € R3? isalso an neighbourhood of (a, b).

yA
y A
o)
|| el
(a,b)}9
a X X
Rectangular neighbourhood Circular neighbourhood

1.5 Interior point

LetS € R3. A point (a, b,c) € S issaid to be an interior point of S if there
exists a neighbourhood N of (a, b, c) such that N € S. The set of al interior

points of S issaid to bethe interior of S and isdenoted by int S.

1.6 Open set

A set S € R3 issaid to be an open set in R3 if each point of S is an interior

point of S. Clearly R3 and ¢ both are open setsin R3.
1.7 Worked example

1. ShowthatS ={(x,y):—1<x<1,—-2<y<2}isan open st.

— Let(a,b) € S. Then S isitself aneighbourhood of (a, b). Therefore (a, b)
Is an interior point of S. Since (a, b) is an arbitrary point of S, therefore each
pointin S isan interior point of S. Hence S is an open set.

12




2. Show that § = {(x,y): (x — 3)? + (y — 5)% = 100} is an open set.
—  Let(a,b) € S. Then S isitself aneighbourhood of (a, b). Therefore (a, b)
is an interior point of S. Since (a, b) is an arbitrary point of S, therefore each
pointin S isan interior point of S. Hence S is an open set.
3. Justify your answer: S = {(x,y): x + y < 1} isan open set.
— Let (a,b) € S be any point and r be the
perpendicular distance between (a,b) and the V1
straight linex +y = 1.
We define aneighbourhood N of (a, b) by
N ={(x,y) ER%:(x—a)?+ (y — b)? < r?}
Clearly N < S. Therefore (a,b) is an

interior point of S. Since (a, b) is an arbitrary
point of S, therefore each point in S is an interior point of S. Hence S is an open
Set.
4. 1sS = {(x,y):2 < x* + y?> < 3} an open set?
- Let (a,b) € S be any point and r;, 7, be the shortest distance between
(a,b) andthecirclesx? + y* = 2 and x% + y* = 3.

Let r = min{ry, r,}. AY

We define a neighbourhood N of

N
(a,b) by / (a,b) .
N = {(x,y) € R (x — a)? Q/ 4 y? =2
+(y — b)* <r?} x2+y2=3

Clearly N € S.

Therefore (a,b) is an interior
point of S. Since (a, b) is an arbitrary point of S, therefore each point in S isan
interior point of S. Hence S is an open set.
5  I1sS ={(x,y):x* < y} an open set?
—  Let (a,b) € S be any point and r be the shortest distance between (a, b)
and the parabolax? = y.
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We define a neighbourhood N of (a, b) by
N={xy) eR*(x—a)*+ (y—b)* <r?}
Clearly N C S.

yﬂ

b
Therefore (a, b) isan interior point of S. Since (a,b)

(a, b) isan arhitrary point of S, therefore each point

v

inS isan interior point of S. Hence S is an open set. 0

o Note: Similarly the following sets are open
setsin R?:

(i) S={(xy) € R*:4x? +9y? < 36}

(i) S={(y) €ER%x>0,y>0}

(i) S={(x,y) € R%:xy < 1}

(iv) S={(xy) ER*x<y}

6. Determinewhether § = {(x,0): x € R} an
open set. y4
— Let (a,0) €S be any point. Then every

neighbourhood of (a,0) contains infinitely many

pointswhich do not belongto S. Therefore (a, 0) is @

v

=

not an interior point of S. Hence S isnot an interior (a,0)

point of S. 0

1 1

. Note: Similarly S = {(;,;) € R>:m,n € N} isnot an open set in R2.

>  Theorem 1.7.1: The union of a finite number of open setsin R3 isan
open set in R3.
Proof: Let S;,S,, ..., S,, bem open setsin R3 and

m
S = USl
i=1

Let (a,b,c) €S. Then (a,b,c)€S; for some i=1,2,..,m. Since

(a,b,c) € S; and S; is an open set in R3, (a,b,c) is an interior point of S;.
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Therefore there exists a nbd N of (a,b,c) such that N € S;. Since S; € S,
therefore N C S.

This shows that (a, b, ¢) is aso an interior point of S. Since (a, b, ¢) is an
arbitrary point of S, therefore each point in S isan interior point of S. Hence S is
an open set.

This completes the proof.
>  Theorem 1.7.2: Theunion of arbitrary collections of open setsin R3 is
an open set in R3.

Proof: Let {S;:i € A}, A being asubset of N, be a collection of open setsin

R3 and
S = USl
i=A

Let (a,b,c) € S.Then(a,b,c) € Si_for somei € A. Since(a, b, c) € S; and
S; isanopensetinR3, (a, b, ¢) isaninterior point of S;. Therefore there existsa
nbd N of (a,b,c) suchthat N € §;. Since S; € S, therefore N € S.
Thisshowsthat (a, b, ¢) isalso aninterior point of S. Since(a, b, ¢) isan arbitrary
point of S, therefore each point in S is an interior point of S. Hence S is an open
Set.
>  Theorem 1.7.3: Theintersection of finite number of open setsin R3 is
an open set in R3.

Proof: LetS;,S,, ..., S,, bem open setsin R3 and

m
S = ﬂsi
i=1

Two cases arise.

Case-l: S = ¢

Then S isan open set in R3.

Case-2: S+ ¢

Let (a,b,c)€S. Then (a,b,c) €S; for each i=1,2,..,m. Since
(a,b,c) € S; and S; is an open set in R3, (a,b,c) is an interior point of S;.

Therefore there exists r; > 0 such that
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N, ={(x,y,2) ER:(x—a)’+ (y—b)? +(z—c)? <1?}C5;
Let r = min{ry, 1y, ..., 15} Then
N={(xy2z)eR%(x—a)’+(y—b)>+(z—c)*<r?}cN,
foreachi=1,2,...,m.
Thus we have

N Cc foreach i =1,2,...,m

Si
m
= - ﬂSl =S
i=1

This shows that (a, b, c) is an interior point of S. Since (a, b, c) is an
arbitrary point of S, therefore each point in S isan interior point of S. Hence S is

an open set.

o Note: The intersection of an infinite number of open setsin R3 may be or
may not be an open set in R3.
L et us consider the collection of open sets
S, = {(x,y,z) ER3:x%2+y2+22< %},n €N
Then _
5= = (Cey.2) € R:x2 4y + 22 < 0) = ((0,0,0))

n=1
which is not an open set in R3.

Next we consider the collection of open sets

S, ={(x,y,z) ER3:x2+y?+z2<n},neN

5=ﬂs,1=51

n=1

Then

which is an open set in R3.

1.8 Closed set

A set S € R3issaidtobeaclosed set in R? if the complement of S inR3 is
an open setin R3. Clearly R3 and ¢ both are closed setsin R3.
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1.8.1 Examples

1. S={(y,2z) ER%:x%2+y2+22>r?}isaclosed setin R3, since S¢ =
{(x,y,2z) € R3:x% + y? + z%2 < r?}isanopen setin R3,
2. R3and ¢ areclosed setsin R3.

> Theorem 1.8.1: The union of finite number of closed sets in R3 is
closed.
Proof: Let F;, F,, ..., E,, bem closed setsin R3 and

m

F = U F,
i=1
m

F¢ = ﬂ Ff
i=1

Since each F; isan open setin R3 and intersection of finite number of open

Now

setsis also an open set in R3, therefore F€ is an open set in R3. Hence F is an
closed set in R3.

This completes the proof.

o Note: Similarly the intersection of finite number of closed setsin R3 is
closed in R3.

»  Theorem 1.8.2: Theintersection of arbitrary number of closed setsin
R3 isclosed in R3.
Proof: Let {F;:i € A}, A being a subset of N, be a collection of closed sets

in R3 and
F == ﬂFl
i=A

FC ES UFI.C
i=A

Since each F; isan open set in R3 and union of arbitrary collection of open

Now

setsis also an open set in R3, therefore F¢ is an open set in R3. Hence F is an
closed set in R3.

1.7




o Note: The union of an infinite number of closed setsin R® may or may not
be aclosed set in R3.

Let us consider the collection of closed sets
1
E, = {(x,y,z) eER:x2+y2+2z2<1 —E},n €N

Then

F= UFi ={(x,y,z) ER:x? +y2 + 22 <1}
i=1

which is not aclosed set in R3.

Next we consider the collection of closed sets

1
E, = {(x,y,z) € R3:x2 + y? + z2 SE},n EN

F= UFi =F,
i=1

which isaclosed set in R3.

Then

1.8.2 Worked example

1. Showthat F = {(a,0):a € R} isaclosed set in R?.
—  HereF® ={(x,y) € R®:y # 0} = F, UF, where
F,={(x,y) ER%y >0} and F,={(x,y) € R%y<0}

Let (a,b) € F;. Then b > 0. By Archimedean property, there exists a red
number r such that 0 < r < b. We now define a nbd Yy
N of (a,b) as
N={(xy) eER:(x—a)’+(y—-b)?<(b-1)%

Clearly N € F,. Therefore (a,b) is an interior

point of F;. Since (a, b) is arbitrary, therefore each

point in F; is an interior point of F;. Hence F; isan
open set.

Similarly we can show that F, isan open set.

1.8
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Since finite union of open setsis an open set, therefore F€ = F; U F, isan
open set in R2.
Consequently, F isaclosed set in R?.

3 Note: Similarly theset F = {(x,y) € R?:1 < x? + y? < 4} isaclosed set
in R2.

1.9 Limit point

A point (a,b,c) in R is said to be a limit point of aset S € R3 if every

neighbourhood of (a, b, ¢) containsinfinitely many points of S.

The set of all limit pointsof S iscalled derived set of S and is denoted by S¢

!

orS'.
1.9.1 Examples

1.  Find the limit points and derived set of S = 17V
{(a,0):a € R}.

—  Let (a,0) € S be an arbitrary point. Then any
nbd of (a,0) contains infinitely many points of S.

Therefore (a, 0) is alimit point of S. Since (a,0) is

v

arbitrary, therefore every point of S isalimit point of b
S.

We now consider a point (a, 8) where 8 # 0. Then (a,f) € S. Now the
nbd N = {(x,y) € R%: (x — a)? + (y — B)? < B2} does not contain any point of
S. Hence (a, B) isnot alimit point of S.

Therefore al limit pointsof S belongto S,i.e. S' = S.

2. Find the limit points and derived set of § = {(x,y) € R%:0 < x < 1,
0<y<1}

— Let (a,b) € S be an arbitrary point. Then any nbd of (a,b) contains
infinitely many points of S. Therefore (a, b) isalimit point of S. Since (a, b) is

arbitrary, therefore every point of S isalimit point of S.

1.9



Next we consider theorigin (0,0). Thenthenbd N = {(x, y): x? + y? < r?}
where r is any positive integer, contains vt

infinitely many points of S. Thus (0,0) is

also alimit point of S. @

Similarly if we consider any point
(x,y) onthesides of thesquarex = 0,x = -
1,y=0,y=1 and for each point, we

consider a disc of radius r > 0 about the /r

point (x, y), wefind that each disc contains Q j
infinitely many points of S. Therefore each
point on the sides of the above squareisalimit pint of S.
Thereforethe derived set of S is
S'={(x,y) ER*:0<x<1,0<y<1}
3. Find the limit pointsand derived set of § = Q X Q.

Let (a,b) € R? be an arbitrary point. Then any nbd of (a,b) contains
infinitely many points of S. Therefore (a, b) isalimit point of S. Since (a, b) is
arbitrary, therefore every point of R? isalimit point of S.

Therefore the derived set of SisS’ = R2.

4, Find thederived set of § = Z X Z.
—  Let (a,b) € R? be an arbitrary point. Then there exist integers m and n
suchthaam<a<m+landn<b<n+1.

Now a and b can either be the midpoints of the intervals (m,m + 1) and
(n,n + 1) respectively or they are closer to any one of their respective end points.
We choose the nbd

— 2. 2 2 1
N-{(x,y)E]R{ :(x—a)*+ (y—b) <Z}

If a and b are midpointsof heir respectiveintervals, then N containsno point
of S.
If a and b are not the midpoints, then N containseither (m, n) or (m + 1,n),
or(mn+1l)or(m+1,n+1).
1.10



Thus N contains either no point of S or at most one point of S.

Hence (a, b) isnot alimit point of S. Since (a, b) is arbitrary, therefore S

has no limit point and consequently, the derived set of S isS’ = ¢.

5.

%

Find thederived set of S = T X T whereT isafinite set.
Let (a,b) € S beanarbitrary point. SinceT isafiniteset, soisT X T. Thus

any nbd of (a, b) contains finitely many points of S. Hence (a, b) is not a limit

point of S. Since (a, b) is arbitrary, S has no limit point and consequently, the
derived set of S isS’' = ¢.

6.

_>

that

Find thederived set of § = {(1,1

m n

) ERZmnce N}.
Letm € N and € > 0 be arhitrary.
By Archimedean property of R, there exists a natural number p such that

1 1 1 1
0<—-<e€e and 0<-- < < <—-<c¢€
p p+2 p+1 »p
2N S S B
(E_E> +<E_0> =ﬁ<€ for k=p,p+1,p+2,..

Therefore an arbitrary nbd N of (% 0), defined by

1 2
N = {(x,y) € R2: (x—a> +(y—0)2< 62}
containsinfinitely many points of S. Hence (i 0) isalimit point of S.
Similarly, we can show that (0%) isalimit point of S.

Again by Archimedean property of R, there exists a natura number p such

O<1<E d 0<-- < ! < ! <1<E
—_— —_— an cee —_— —_—
P V2 p+2 p+1 p 2
(E-0) +(k-0) mZ<e for k=pprip2
“ % 2 = 2 € or =pDp Y .

This shows that the nbd N of (0,0) contains infinitely many points of S.

Hence (0,0) isalimit point of S.

Thusthederived set of S is

S'"={(0,0)}u {(%0) :m € N} U {(0,1>:n € N}

n

1.11



> Theorem19.1: Let FC R3. Fisclosed in R3 iff F' C F.
Proof: Let F beaclosed set inR3 and X € R — F. Then X € F€ in R3. ASF¢
isopen, X isan interior point of F¢ in R3. Hence there existsanbd N of X such
that N € F¢,i.ee NNF = ¢.

Thisshowsthat X isnot alimit point of F. Hence all limit pointsof F belong
toFinR3,i.e. F' CF.

Conversely, let F' € Fand X € F¢ in R3.

Clearly X isnot alimit point of F,asF’' C F.

Hencethereexistsanbd N of X such that N contains at most afinite number
of points X;, X5, ..., X; Of F.

Let X = (a,b,c) and X; = (a;, b;,c;) fori =1,2, ..., k. Let

T = \/(a —a;)>+ (b—b))?+ (c — ¢;)? for i=12,..,k

I.e. r; isthe distance between X and X; fori = 1,2, ..., k.

Let r = min{ry, 1y, ..., 1% }.

Thenthenbd N = {(x,y,z) e R®: (x —a)? + (y = b)? + (z — ¢)? < r?}
does not contain X;, X5, ..., X.

Hence N does not contain any point of F.

Therefore N € F€ in R3.

This shows that X is an interior point of F€.

Hence F€ is an open set and so F isaclosed set in R3.

1.10 Bolzano-Weier strass Theorem

Every bounded infinite subset of R3 has alimit point in R3.

. Note: The following setsin R? areclosed inR? asF’' C F.
(i) F={(a0):a€eR}

(i) F=ZxZ

(i) F =T X T whereT isafinite s&t.

1.11 Exercise

1.  Show that the following sets are neither closed nor open setsin R2,

1.12



i) S={xy)eR:0<x<1,0<y<1}
(i) S={(x,y) ER%y >0}

(i) S=QxQ

(iv) S={(x,y) e R*:y > x? |x| <2}

1.2. Limit and continuity in R"

Let D € R™ be a non-empty set and f: D — R be a function on D, i.e.
(x1,%5, .., %) € D implies f(xq,x,,...,x,) € R. Then f is said to be a real
valued function of n variableson D. If D € R?, f is called a function of two

variablesand if D € R3, f is called afunction of three variables.
2.1 Limit of a function
2.1.1 Limit of afunction in R?

Let D € R?, f: D - R beafunction and (a, b) bealimit point of D. A redl
number [ issaid to bealimit or double limit of f at (a, b) if for any € > 0, there
exists § > 0 such that

|f(x,y) — 1| <€ forall (x,y) € Ns(a,b)nD

where Ng(a, b) denotes the deleted §-neighbourhood of (a, b). We write it
as

lim x,y) =1
(xIY)lﬁ(a,b)f( y)

2.1.2 Limit of afunction in R3

Let D € R3, f:D - R be afunction and (a, b, ¢) be alimit point of D. A
real number [ issaid to bealimit or doublelimit of f at (a, b, c) if forany e > 0,
there exists § > 0 such that

|f(x,y,2z) —l| <€ forall (x,y,z) € Ns(a,b,c)ND
where Ns(a, b, c) denotes the deleted §-neighbourhood of (a, b,c). We

write it as(x,y,zl)lf(la,b,c) flx,y,2z) =1
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2.1.3 Repeated limit

Let D € R?, f:D — R be a function and (a, b) be a limit point of D. If

lim f(x,y) existsfor al y, thenitisafunction of y, say g(y). If lin% g(y) exists,
x-a y—

then lin% lim f(x,y) existsand it is called arepeated limit of f.
y—=b x—a

Again if lin% f(x,y) exists for dl x, then it is a function ofx, say h(x). If
y—)

lim h(x) exists, then lim lin% f(x,y) existsand it is called a repeated limit of f.
x—-a x—=ay-

2.1.3.1 Worked example

1.

L et

xsin(%)+y
Y) = ) 0
fey) =—725 x+y#

Show that lim lim f(x,y) = 1, but lim lim f(x, y) does not exists.
y—0 x>0 x—0 y—0

We have
x sin (%) +y
V) = ) 0
f,y) Xty x+y#
Now
lim f(x,y)
x—0
x sin (%) +y
= lim [for fixed y]
x>0 Xty
1
y |* sin (;) is a bounded function on N’'(0) and
y 1
limx =0, llmxsm< ) =0
x—0 x—0 X
=1
Therefore

lim lim f(x,y) = 11m1 =1
y—0x—-0

in(2
Again 11m f(x,y) = lim M [for fixed x] = sin (i)

y—-0 x+y
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Since lim sin G) does not exist, by Cauchy’s condition, therefore
lim lim sin ( ) does not exit.
x—0y—-0 X
2. Let
x—y+x*+y?

Y) = ) >0, >0
ey == x y

Show that both repeated limit exist but they are different.
3. Let f(x, y)—xsm( ) y # 0. Show that llmllmf(x y) =1 but

hm 11m f(x,y) doesnot exists.

x—0 y—0
4, Let

sinx + sin 2y
tan2x + tany’

fx,y) = (x,y) # (0,0)

Show that limlim f(x,y) = 2 and lim lim f(x,y) ==
y—0 x—-0 x—0 y—0

5. Let
x2 — y2
fx,y) = xyxz pel (x,y) # (0,0)
Show that ” lm(loo f(x,y) =0.
—  Lete > 0 bearbitrary.
We note that
2
x —
ﬁ <1, |x| < /x?% +y? lyl < /x? + y?
Now
2 yZ
0,0) =
FGo) = FO0I = vy g
< |xy|
= |x||y|

<x?+y’<e
holdsif (x — 0)% + (y — 0)? < 62 = e where § = +e.
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Thus for any € > 0, there exists § > 0 such that |f(x,y) — f(0,0)| < €

when (x — 0)% + (y — 0)% < §2.
Thisshowsthat lim f(x,y) =0.

(x,y)—(0,0)
6. L et
X3 — 3
ey =arpm @N*00
Showthat lim x,y) =0.
(x.y)—>(0,0)f( y)
—  Lete > 0 bearbitrary.
We note that
3 3
X3 =y < Ix*+y3, P <P +yDz, |y < (x*+y?)2
Now
x3 _ y3
£ G = FOOI = 5
- x3 +y3
- X2 + y2

3
2 2 2\5>
< (x*+y“)2

=2\/m<e

holdsif \/(x — 0)2 4+ (y — 0)2 < § = €/2 where § = €/2.

Thus for any € > 0, there exists § > 0 such that |f(x,y) — f(0,0)| < €

when \/(x — 0)2 + (y — 0)Z < 6.

Thisshowsthat lim x,y) = 0.
(x,y)—>(0,0)f( y)

7. Showthat lim x,y) = 0 where
(x,y)—>(0,0)f( y)

x2y?
xZ+y2’

i) fxy = (x,y) # (0,0)

(i) FOoy) =22 (xy) % (0,0)

xZ+y2’

xtyt
xZ+y2’

(i) flxy) = (x,y) # (0,0)



— (i) Let € > 0 be arbitrary.

Now
x* + y*
,¥) = f(0,0)] =

1 Cey) = FO0] = |35
- x4 N y4
- xZ + yZ x2 + y2
- (x®+y2)?|  |(x* +y?)?
- x2 + y2 x2 + y2

=2(x%2+y?)<e
holdsif (x —0)?2 + (y — 0)?2 < §2 = ¢/2 where § = ,/¢/2

Thus for any € > 0, there exists § > 0 such that |f(x,y) — f(0,0)| < €

when (x — 0)% + (y — 0)% < §2.

Thisshowsthat lim x,v) = 0.
x ‘(OO)f( y)

8.  Show that s 11m f(x,y) doesnot exist where

0.0
(i) flxy) = y (x,) # (0,0)
(i) flxy) = y (x,) # (0,0)
(i) flxy) == iy , (x,3) # (0,0)
(iv) fxy)= x4+ a2 (6y) #(0,0)
N

(i) Let(x,y) - (0,0) aongthepathy = mx. Then

. (e y) = l x2 —m?x?

im x,y) = lim————

(x,y)—(0,0) floy S0Xx2 +m2x2
1 —m?

=TT m2 [ x = 0,x # 0]

which is different for different values of m. Hence( l)irr(l0 0 f(x,y) does
X,y )0,

not exist.

(ii)  Choosethe path x = my?2.

1.17



(iii) Firstwelet (x,y) — (0,0) aong the path y = 0. Then
X3
fx,y)=_ lim —=0

(x, y) (0 0) (x,y)—(0,0) x

Now we let (x,y) — (0,0) aong the path y = sin x. then

)= x3 + sin3 x [0 ] ]

lim = lim ——— — form
(x,¥)-(0, O)f Y (x,¥)—-(0,0) x —sinx 0
_ 3x%2 4+ 3sinxcosx [0

= im [— form
(x,)—(0,0) 1—cosx 0

6x — 3sin3 x + 6 sinx cos? x

im -
(x,¥)—(0,0) sin x

(x’yl)i_r)r(lo'o) [6 (siz x) — 3sin? x + 6 cos? x]

ceve i) -

=12

Thus we see that the limiting values are different for two different paths to

theorigin. Hence lim  f(x,y) does not exist.
(x,¥)—(0,0)

Alter native method:
(iv) let (x,v) — (0,0) along the path x — y = mx3. Then
x3 + (x + mx3)3

flx,y) = lim

(xy)—>(0 0) mx3
1+ (1 +mx?)3
= lim
x—0 m
_ 2
B m

which is different for different values of m. Hence hm f(x,y) does

(x,¥)—(0,0)
not exist.

(v) Choosethepathy = mx2.

. Note: If two repeated limits exist and not equal, then the double limit does

not exist.
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9. Showthat lim f(x,y) doesnot exist where
(x,y)—(0,0)

(i) flx,y) =222 5 x ) = (0,0)

tan 2x+tany
_ 2 2
(i) fxy) =" (xy) = (0,0)
x+y
[Hint: Here two repeated limits are unequal .]
10. Let

f(x,y) = xsin%+ysin;, xy#0
0 , xy=0
Show that the double limit of f at (0,0) exists but both the repeated
limits do not exist at (0,0).
—  Lete > 0 bearbitrary.

Now
. 1+ 1
XSIHy ySIIIx

1
x sin—
y

1
ysin—

<

+

< x| + |yl
<2yx?+y?<e
holdsif (x — 0)? + (y — 0)? < §% = €2/4 where § = ¢/2.
Thus for any € > 0, there exists § > 0 such that |f(x,y) — f(0,0)] < €
when (x — 0)% + (y — 0)% < §2.

Thisshowsthat lim x,y) = 0.
(x,y)—>(0,0)f( Y)

Since lir% sini does not exist, therefore lir% f(x,y) does not exists.
Y- y—
Consequently, lir% 1irr(1) f(x,y) doesnot exists.
x->0y—

Agan lim sin% does not exist, therefore 1irr(1) f(x,y) does not exists.
X—

x—0

Consequently, lir% lirr(l) f(x,y) doesnot exists.
y—-0x—
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11. Let
1, xy +0
0, xy=0
Show that the repeated limitsof f existsat (0,0) and are equal but the
double limit does not exist at (0,0).

f(x,y) ={

—  Given

1, x#*0

0, x=0
Therefore)lci_r%Jl/i_rgf(x,y) =1, becausex —» 0 impliesx # 0.

lim f(x,y) = {
y—0

Again

1, y+0

0, y=20
Therefore},i_r)% chi_%f(x,y) = 1, because yx — 0 impliesy # 0.

lim f(x, y) = {

Hence the repeated limits exist and are equal to 1.
Let (x,y) — (0,0) along the path y = 0, i.e. along the x-axis. Then

(xy)e(oo)f(x ,Y) = hmf(x 0) = 11m0 =0

Againlet (x,y) — (0,0) along the path y = x. Then

= 1 = l 1=1
im fGey) = lim fx,x) = lim

For two different paths, we get two different limits. Hence

lim x,y) does not exit.
(x,¥)—(0, O)f( Y)

o Note: The above example shows that even if both the repeated limits
exist and are equal, the doublelimit may not exist.
12. Let

Xy

f(x, )’)_m,

(x,y) # (0,0)

Show that the repeated limitsof f existsat (0,0) and are equal but the
double limit does not exist at (0,0).
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13. Let

1 x*—y?
xsu1—-+—3———5,
flxy) = y x*+ty

0 , y=0

y+0

Show that limlim f(x,y) exists but neither limlim f(x,y) nor
y—0 x-0 x-0 y—-0

lim X,Y) exist.
(xy)—(0, O)f( y)

%

y2
11m flx,y) = hm <x sin— + )

+ y2
y? 1
= —— [ llm(xsm ) O]
y2 x—0 y
=-1
. lim lim f(x,y) = hm( 1) =

y—0x—-0

Hence lim lim f (x,y) exists.
y-0 x—

Since lirré (x sin ;) does not exist, by Cauchy’s condition, therefore
y—)
lirr(1) f(x,y) does not exist and consequently lin(l) liné f(x,y) doesnot exist.
Y- x->0y—

Let f(x,y) = g(x,¥) + h(x,y)

where
1
x sin—, y+0
g(x,y) = y
0o , y=0
and
x2 — 2
5 o
h(x}y): x“+y
0 , xy=20
Now
@y = i 1 0
lim = im xsin—=
()~ (0, 0)g 24 (x,y)—(0,0) y
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Let (x,y) — (0,0) along the path y = mx. Then

_ hCxy) = 1 x*—m?x* 1-m?
lim x,y) = lim
(x,y)~(0,0) Y S0xZ +m2x2 1+ m?

which is different for different values of m. Hence( linr%0 ” h(x,y) does
x,y)—(0,

not exist and consequently, lméo ” f(x,y) doesnot exist.

14. Let

i 1+ a4 =0
ysmx Z 12 X

0 , x=0
Show that limlim f(x,y) exists but neither limlim f(x,y) nor
x—0 y-0 y—0 x—0

f(xy) =

lim X,Yy) exist.
(xy)—»(OO)f( y)

»  Theorem 1.3.1: Let D € R?, f: D - R beafunction and (a, b) be alimit

point of D. Let( l)m(1 ) f(x,y) exist and equal to A. Let hm f(x y) exist for
x,y)=(a,

each fixed value of y in the deleted neighbourhood of b and hrrlg f(x,y) exist for
y—>
each fixed value of x in the deleted neighbourhood of a. Then lim lir% flx,y) =
x-ay-
lim lim f(x,y) =
y—-b x—a

Proof: Since lim f(x, y) exists, let lim f(x,y) = g(y).
xX—a xX—a

Let € > 0 be arbitrary. Then for fixed value of y, there exists §, > 0 such
that

€
If(x,y) —g(y)| < 5 for all x satisfying 0 < |x — a| < 6, (D

Again : 1)1rr(1 ) f(x,y) exists and equal to A. Then for the above chosen
x,y)—(a,

e > 0, thereexists §, > 0 such that

€
|f(x,y) — Al <§ V x,y satisfying 0 < |x — a| < §,,0 < |y — b|

<94, (2)
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Now (1) holds for each fixed value of y. Thereforefor 0 < |y — b| < §,,
there exists 65 > 0 such that

€
If(x,y) —g(y)| < 5 for all x satisfying 0 < |x — a| < 83 (3)

Let &6 = min{d,, 55} > 0. Then (2) and (3) hold for all x satisfying 0 <
lx —al < 6,0 <|y—>b| <6.Now
lg) —Al=1f(,y) —A+g(y) — fx,y)l

<|f(x,y) —Al+|f(x,y) — gl

< 64_6 _
2777 ¢

for al y satisfying 0 < |y — b| < 6.
Thisshowsthat lim g(y) = A4, i.e. lim lim f(x,y) =
y—b y—-b x—a

Similarly we can show that lim lir% fx,y)=A4
x-ay-
Thuslim lim f(x,y) = lim lim f(x,y) = A
x—ay-b y—b x—a

This compl etes the proof.

1.3.Continuity of a function
3.1 Continuity in R?
Let D € R?, f: D - R be afunction and (a,b) € D. Then f is said to be
continuous a (a,b) if for any e >0, there exists § >0 such that
|f(x,y) — f(a,b)| < eforal (x,y) € Ns(a,b) N D

I.e., 11m f(x y) = f(a,b)

xy)—

e, (hk)_%oo)f(a+h b+k) = f(a b) where (a + h,b + k) € D.

3.2 Continuity in R3

Let D € R3, f:D - R beafunctionand (a,b,c) € D. Then f issaid to be
continuous a (a,b,c) if for any € >0, there exists § > 0 such that
|f(x,v,2) — f(a,b,c)| < eforall (x,y,2) € Ns(a,b,c) N D

i.e., (xyzl)lir(labc)f(x,y, z) = f(a, b, c).
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3.3 Exercise

1. Show that f iscontinuousat (0,0) where

(x3 — 3
0 faop < Ty BT
L 0, x*+y*=0
((px + qy) sinf, y+0
(ii) fxy) = y
\ 0 ’ Yy = 0
(oxy
(i) foo,y) ={JxZ +y2 () = (0.0)
. 0 , (xy)=(00)
x2 — y?
(iv) fay =@y ENTO0
0 , (xy)=(00)

_)

(i) Lete > 0 bearbitrary. Then
|f (x,¥) = £(0,0)]

x3 — y3

x? + y?

|x°| ly°|

kb

3 3
Py P4yt
xZ + yZ x2 + y2

3
_ 264y
- xZ + yZ

=2{Jx*+y*<e

[+ Ixl < Vx5 Iyl < a2+ 7]

holdsif (x — 0)?2 + (y — 0)? < 6% = €2 /4 where § = €/2.
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Therefore |f(x,y) — f(0,0)] < e whenever (x —0)? + (y — 0)? < §2
holds.

This showsthat f(x, y) is continuous at (0,0).
(i) Lete > 0 bearbitrary. Then

X
= [(px + qy) sin;

X
< |(px + qy)| [+ [sin—| < 1]

< |px| + Iqy|
= |Ipllx| + |qlly]

< (Ipl + lgDvx* + yz <e€

holdsif (x — 0)% + (y — 0)? <

Therefore |f(x,y) — f(0,0)] <e whenever (x —0)? + (y — 0)? < §2
holds.
This shows that f(x, y) is continuous at (0,0).

(i) Hint: [x| < /x2 4+ yZ and |y| < /x% + y2. yzg,/x2+y2.
1 1nt- 2 2 2 2
(iv) Hint: |x] < x?2+y?, |yl <Jx?2+y xyx2+y
lxy| < x% + y2.
2. Show that f isnot continuousat (0, 0) where
itd (x.3) # (0,0)
. T —_— x'y )
Q) fGey) =44/x* +y*
0, (xy)=(00)
(x* + y*
.. ) xX+Yy
(ii) fx,y) =4 x=Yy
X o , XxX=y
(3 + y3
xX+Yy
(iii) fx,y) =4 x=Yy
. o , X=y
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sin(x* + y*)

, x,y)#* (0,0
(iv) foy) =1 G b (x,y) # (0,0)
0 ,  (xy)=1(0,0)
(i) Let(x,y)— (0,0) dong the pathy = mx. Then
FOoy) = lim— -
o Slo T ) = 0 Vit tmixt 1t me

which is different for different values of m. Hence hm f (x,y) does

(xy)—
not exist.
Therefore f is not continuous at (0,0).

(ii) Let (x,y) — (0,0) dongthepath x — y = mx*. Then

xt+(x—-mxH* 1+ (1 -mx3)?
— lim _

xX,y) = hm =1i
(x, y) (0 O)f( y) = mx* x—0 m

2

m

which is different for different values of m. Hence( l)in%0 0 f(x,y) does
X,y )—(0,

not exist.
Therefore f is not continuous at (0,0).

(iii) Hint: Choose the path x — y = mx3.

(iv) Hint: Choose the path y = mx and applying L’Hospital rule, obtain the

limit to be 1. Show( llrr(loo)f(x ,¥) # £(0,0).

3. Show that f isnot continuousat (0, 0) where

Xy +z
() fx,y) = x% + yz + 72’ (x,y,2z) # (0,0)
0, (xy2=(00)
x? —y% + 2%
(iD) fry) =42 +y2 +22° (x,y,2) # (0,0)
0 , (x,y,z) = (O, O)

%
(i)  Hint: Choose the path y = mx,z = 0.
(i)  Hint: Choose the path y = mx,z = 0.
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> Theorem 3.1: Let DS R?, f:D - R be a function continuous at
(a,b) € D. Then there exists a neighbourhood of (a, b) in which f(x,y) is
bounded.
Proof: Since f is continuous at (a, b), therefore for e = 1, there exists § > 0
such that
|f(x,y) — f(a,b)| <1 forall (x,y) € Ns(a,b) N D
= f(a,b) —1< f(x,y) < f(a,b) +1 forall (x,y) € Ns(a,b) N D
Letm = f(a,b) —1andM = f(a,b) + 1. Thenm,M € R. Thus
m< f(x,y) <M forall (x,y) € Ns(a,b) N D
This showsthat f isboundedin Ng(a, b) N D.

This completes the proof.

. Note: Consider the function

1 2 2
2 X +y #* 0
flx,y) ={x"tYy
o , x2+y2#0

Since f is not bounded in every neighbourhood of (0,0), therefore f is not

continuous at (0,0).

> Theorem3.2: Let D € R?, f, g: D - R betwo functions continuous at
(a,b) € D. Then
(i) |fliscontinuousat (a,b).
(i) cf iscontinuousat (a,b) wherec # 0.
(i) f + giscontinuousat (a, b).
(iv) fgiscontinuousat (a,b).
(v) f/giscontinuousat (a,b) provided g(x,y) # 0in D.
Proof:
(i)  f:D - Risdefinedby |f[(x,y) = |f(x,»)], (x,y) € D.
If1G6y) = If1(a,b)| = |If (e, )| = |f (@, b)I| < |f (x, ) = f(a b)
Since f iscontinuous at (a, b), therefore for arbitrarily chosen € > 0, there
exists § > 0 such that
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|f (x,y) — f(a,b)| <€ forall (x,y) € Ns(a,b) N D
Therefore ||f|(x,y) — |f|(a, b)| < |f (x,y) — f(a,b)| < e forall (x,y) €
Ns(a,b) N D.
This showsthat |f| iscontinuous at (a, b).
(iv) Wehave
Ifg(x,y) — fg(a,b)
= |f(x,¥)g(x,y) — f(a,b)g(a,b)|
= [f(x, )9 y) —g(a,b)} — g(a, b){f (x,¥) — f(a b)}|

< |fC»IlgCe,y) —g(a,b)| + |g(a, b)lIf (x,¥) — f(a, b)l| (1)
Let € > 0 be arbitrary.

Since f(x,y) iscontinuous & (a, b), therefore for the above chosen € > 0,
there exists §; > 0 such that
|If(x,y) — f(a,b)| < e forall (x,y)
€ N5, (a,b)N D (2)
Since||f(x,y)| — |f(a,b)|| < |f(x,y) — f(a,b)|, it follows that
|If e, I = If (@, b)|| < € forall (x,y)
€ N5, (a,b) N D
= |f(a,b)| —e < |f(x,y)| <|f(a,b)| + € forall (x,y) € Ns (a,b)ND
Let B' = |f(a,b)| + €. Then|f(x,y)| < B'fordl (x,y) € Nél(a,b) NnD.
Let B = max{B’, |g(a, b)|} > 0. Therefore, from (1)
Ifg(x,¥) — fg(a, D)
<Blg(x,y) —g(a,b)| + Blf (x,y) — f(a,b)| (3)
Since f (x, y) iscontinuous at (a, b), therefore for the above chosen € > 0,
there exists §, > 0 such that

F(y) = f@,b)] < 5= forall (x,)
€ Ns,(a,b) N D (4)

Since g(x,y) iscontinuous at (a, b), therefore for the above chosen € > 0,
there exists 65 > 0 such that

1.28



9 —glab)l <o forall () €N (@b)ND (5

Let & = min{d;, &,,83}. Then (4) and (5) hold for al (x,y) € Ns(a,b) N

Thus from (3),

Ifg(x,y) — fg(a,b)| < B. ﬁ-l_B ﬁ_ e forall (x,y) € Ng(a,b) N D

This showsthat fg is continuous at (a, b).
(v) Firstweprovethat 1/g iscontinuosat (a, b) if g(x,y) = 0foral (x,y) €
D.

1| _lgGy) —g(a b)
gxy) glab)l gt yllglab)]

Let € = |g(a, b)|/2. Since g is continuous at (a, b), there exists §; > 0
such that

(xﬁ——@bﬂ | (1

,b
19Cy) — ga, b)) < L2

forall (x,y) € N5 (a,b)ND

Now

b
|W@Jﬂ—hﬂmMHgmgno_gm$N<Hﬂ2)|

,b b
9P o el < 1g(a by 9422

= |g(a,b)| -

2 2
b
= IgCoy)l > 1222
,b)|?
= lgCollgla bl > LT @)

for al (x,y) € Ns (a,b) N D.

Let € > 0 be arbitrary. Since g is continuous at (a, b), there exists §, > 0
such that

lg(a,b)|%¢ :
l9Cx,y) = g(a,b)| < ————forall (x,y) € N5,(a,b)N D (3)

Let § = min{d;,d,} > 0. Then, using (1), (2) and (3), we obtain

1 1
—(x,y) —E(a, b)| < e forall (x,y) € Ns(a,b)nD
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Thisshowsthat 1/g iscontinuous at (a, b).

Since f is dso continuous a (a, b), therefore /g is aso continuous at
(a,b).
> Theorem 3.3: Let D S R%, f:D — R be a continuous function at
(a,b) € D. Then the functions f(x,b) and f(a,y) are continuous at x = a
and y = b respectively.
Proof: Since f is continuous a (a, b), therefore for arbitrarily chosen € > 0,
there exists § > 0 such that |f(x,y) — f(a,b)| < e for (x —a)? + (y — b)? <

62 (1)
The above relation holds for y = b also. Therefore
|f(x,b) — f(a,b)| <€ for (x — a)? < §2
ie. |f(x,b)—f(ab)|<e for|x —a| <&

This shows that f(x, b) iscontinuous a x = a.

Similarly (1) holdsfor x = a aso. Proceeding as before, we get

f(a.y) - f(a,b)| <€ for |y — b| < &
This showsthat f(a,y) iscontinuousat y = b.

. Note: Converse of this theorem is not true. Consider the function

Xy
Flxy) = %2 +y% (x,y) # (0,0)
0, @»=(00

Here f(x,0) = 0 = £(0,0) and f(0,y) = 0 = f(0,0)
~ Both f(x,0) and £ (0, y) are continuous at x = 0 and y = 0 respectively.
Let (x,y) — 0 aong the path y = mx. Then

mx? m

I ) =i _
(x,J/)l—r{(IO,O)f(x Y) X0 1+ m?)x? 14+ m?

whichisdifferent for different valuesof m. Therefore( l)irr(l0 ” f(x,y) does
X,y )—~\0,

not exist. Hence f is not continuous at (0,0).

>  Theorem 3.4: Let DS R?, f:D - R be a continuous function at

(a,b) € D. If f(a,b) # 0, then there exists a neighbourhood of (a,b) in
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which f(x,y) and f(a, b) have the same sign.
Proof: Since f is continuous at (a, b), therefore for arbitrarily chosen € =
|f(a,b)|/2, thereexists § > 0 such that

|f (a,b)|

|f(x;y) _f(a, b)l < 2 for all (X,Y)
€ Ns(a,b) N D
,b ,b
— f(ab) - If(c; )| < foy) < Flab) + If((; )|
forall (x,y) € Ns(a,b) N D (D
Two cases arise:
Case-l: |f(a,b)| >0
Then (1) becomes
0< f(C;' b) < flx,y) < 3f(;' b) forall (x,y) € Ns(a,b) N D
= f(x,y) >0 forall (x,y) € Ns(a,b) N D

Thus f(x,y) and f(a, b) are of same sign.
Case-2: |f(a,b)| <0
Then (1) becomes

Bf(;' b) < flx,y) < f(C;' b) <0 forall (x,y) € Ns(a,b) N D
= f(x,y) <0 forall (x,y) € Ns(a,b) N D

Thus f(x,y) and f(a, b) are of same sign.
This completes the proof.

1.4.Partial Derivatives

4.1 First order partial derivatives

4.1.11n R?

Let D € R2. Let f: D — R be afunction and (x,y) be an interior point of
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) If lim FLethy)TE) exists finitely, then it is called the first order partial

derivative with respect to x and is denoted by Z—ﬂ( ) or f,.(x,y).
x!y

i) I lim Ly 7Y exists finitely, then it is called the first order partial

derivative with respect to y and is denoted by Z—£

or f,(x,y).
(x,y)

412InR3

Let D € R3. Let f: D - R beafunction and (x, v, z) be an interior point of
D.

i If }lméf DY exists finitely, then it is called the first order

partial derivative with respect to x and is denoted by or f,.(x,v,2).

]
9x1(x,y,2)

i) If lim [y D TEPD exists finitely, then it is called the first order

partial derivative with respect to y and is denoted by Z—f

Yx,y,z

) or f,(x,y,2).

iy If llin(‘)lf 2t TV exigtsfinitely, thenit iscalled the first order partial

derivative with respect to z and is denoted by a—f| or f,(x,y,2).
0zl (x,y,2)
4.1.3 Examples
1. Find all thefirst order partial derivatives of
X
Z—yZ’ x2 + y2 0
fx,y) =1* 1Y
0 , x*+y?2=0
—  Letx?+y?% #0.Then
y 2x%y y(y? —x?)
Y = e T T e o
x*+y? (x*+y?)? (x*+y?)
X 2xy? x(x? —y?)
fe(x,y) = =

x2 + y2 o (x2 + y2)2 - (x2 + y2)2
Now when x2 + y2 = 0, i.e. whenx = y = 0, then
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2.

£.(0,0) = Ei%f O+h 02 —~ £(0,0)

f(h,0) — £(0,0)

= im h
0-0
=lim——=0
h—-0
_ . f(0,0+k)—f(0,0)
and fy(0,0) = ll(lir(l) .
. f(0,k) — f(0,0)
= lim
k-0 k
i 00
A
=0
Therefore
2_x2
%» x*+y*#0
(e, y) =S (x2 +y2)
0o , x2+y2=0
and
xe_ 2
), x4yi=0
0 , x*+y%2=0
Show that neither £,(0,0) nor f,(0,0) exists, where
(xsin> + ysin— £0
xsin— ysmy, xy
in — =0 0
x sin—, x Yy =
fy) =1 x Y
ysin—, x=0y+0
y
\ 0, x=0y=0
Here

f(0+ h,0)— £(0,0)
h

= 11m

h—0 h
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1
hsmE—O

= m—
— lim si 1
= hl{)l’(l) SIHE

Since }liné sin(1/h) does not exist, therefore £,.(0,0) does not exist.
Similarly since ]lcir% sin(1/k) doesnot exist, therefore f;, (0,0) doesnot exist.

3.  Iff(x,y) = |x| + |yl, (x,y) € R?, then show that neither f,(0,0) nor
f,(0,0) exist.
—  Here
f(0+h,0)—£(0,0)
h
_ lim f(h,0) — £(0,0)

h—0 h

£(0,0) = }li_r)%

Since ,llin(l) (|h|/h) does not exist, therefore £, (0,0) does not exist.

Similarly since
|k|

£,(0,0) = lim =

does not exist, therefore £, (0,0) does not exist.
4.2 Higher order partial derivatives

Let D € R%. Let f: D — R be afunction and (x,y) be an interior point of

D. We define the second order partial derivatives as follows:

62 X h' —Jx )
0° ’ k) — )
fyy(xiy):a_yfz‘zllcli%fy(xy-l_ Iz fY(x y)
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_0*f 0 ofy . f,e+hy)—f,(y)
fry(:y) = dxdy  Ox (63}) - }}_r)r(l) h

0 0 ofy Loy +k) - fi(xy)
frx (6 y) = dydx 0y (6x> B ]l\{l_r)r(l) k

provided all limits exist.

. Note: f,,, (x,y) and ;. (x,y) are called mixed order partial derivatives.

4.2.1 Examples

1. |If

201 (XY _ L2 tan-1 <f)

x“ tan (x) y“tan 3 (x,y)+0

0 , (x,y)=0
show that fxy(O, 0) + fyx(O, 0).

fx,y) =

—  Weknow that

fxy(0,0) = lim Ly 0) ; /,(00) and  £;,(0,0)

— 1 fx(0; k) - fx(0,0)
= lim
k-0 k

provided the limits exist.

Now

fy(h,0) = lim [provided the limit exists]

k
k h
hz tan_l -] — kz tan_l —
= lim (h) (k)
k-0 k
k
24.0-1(K
= lim htan ( ) — lim ktan™?! <E>
k—0 k k-0 k
k -1 h . ! .
h? tan™! (E) " tan (E) isbdd on N'(0, ) and Ilcl_r)r(l) k=0,
= i K

h
. lim ktan™? (—) =0
k—0 k
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_ h? 1
= lim

0 o, 1
lim @ X 7 [6 form, using L' Hospital's rule

h2
=h
and

fy(0,0) = ]lclir(l)

[provided the limit exists]

k
. 0-0

= im =

=0
Therefore

h—-0
fxy(0,0) = lim——=1 (1)

Again

f(h; k) - f(O; k)
h

. h? tan~! (%) —k?tan™! (%)
h-0 h

(0, k) = ’llir% [provided the limit exists]

k? tan™?! (%)

= lim htan™?! k li
—hl_I)I(l) an (h) hl_I)T(l) h

h? tan™! (E)  tan~! (E) isbdd on N'(0,6) and limh =0
h ’ h—0 ’

: h
= lim
. k
"o k ~ lim htan™?! (—) =0
h—0 h
k? 1710
= — ,llig(l) m Xy [6 form, using L' Hospital's rule]
Tz
= —k

and

f(h, 0) - f(O'O)
h

£:(0,0) = }llirré [provided the limit exists]

~0-0
= lim ——
h—0

=0
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Therefore
0,0) = lim 2= 1 2
f5x(0,0) = lim —— = — (2)

From (1) and (2), we see that f,,,(0,0) # f,,(0,0).
| f

Xy, |x| = |yl
fx,y) =
—XY, |x| < |y|
show that f,,(0,0) # f,,(0,0).
We know that
. fy(h,0) —£,(0,0)
fey(0,0) = lim 4 - 4 and  £,,(0,0)
— 1 fx(OJ k) - fx(O:O)
= lim
k-0 k

provided the limits exist.

Now

f(h k) = f(h,0)
k

fy(h,0) = Il{irré [provided the limit exists]

= lim 2 [+ k = 0, h] > [k
k-0 k
=h
and
f(0,k) — f(0,0)
k

fy(0,0) = ]l(in(l) [provided the limit exists]

~0-0
= lim——
k—0
=0
Therefore
0,0) = lim* =% -1 1
fey (0,0) = lim —— = (D)
Agan

h

(0, k) = }lirr(l) [provided the limit exists]
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— lim /% wh—0,|h| < |k
= lim —— [ h—0,|h| < |k|]
= —k
and
h,0) — (0,0
£(0,0) = }lirréf( )h f(0.0) [provided the limit exists]
. 0-0
= lim ——
h—-0
=0
Therefore

—k—-0

f(0,0) = lim = -1 @

From (1) and (2), we seethat f,,,(0,0) # f,,(0,0).
| f

2 _ 42
flxy) = xy;TiI'z’ x2+y2#0
0, x+y'#0
show that £, (0,0) # f,,(0,0).
| f
2.2
fxy) = x:f,yz' (x,y) = 0
0, (y=0

show that £,,(0,0) = £,+(0,0).
| f
(x%2 +y»)log(x* +y*), x*+y?*=+0
fxy) =
0 ) x> +y*=0

show that f,,(0,0) = f,,(0,0).
1.5.Sufficient condition for continuity

Let D € R?, f:D - R beafunction and (a, b) € D. If
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(i) f.(ab) [or fy(a, b)] exists
(i) £, (x,¥) [or f;(x,y)] is bounded in some neighbourhood of (a, b)
Then f is continuous at (a, b).
Proof: Since f,, isbounded in some nbd of (a, b), therefore there exists anbd N
of (a, b) inwhich f,, is bounded.
We choose h, k in away such that (a + h,b),(a,b +k),(a+ h,b+ k) €

N.
Now
fa+hb+k)—f(anb)
=f(a+hb+k)—f(a+hb)+f(a+hDb)—f(ab) (D

Since f,.(a, b) exists, therefore

h,b) — f(a,b
mf(a+ })l f(a )=fx(a’b)

= f(a+h,b) - f(a,b) = hify(a,b) + €(h)} (2)

where e isafunction of h suchthate - 0 ash — 0.

Lett(y) = f(a+ hy). Thent'(y) = f,(a + h,y).
Since f, existsin thenbd of (a, b), therefore t’(y) existsin [b, b + k].

Therefore by Lagrange’s mean value theorem of differential calculus, there
exists @ € (0,1) such that
t(b+k)—t(b) =kt'(b+ 6k)
= f(a+hb+k)—f(at+hb)=kf,(a+hb+06k) (3)
From (1), (2) and (3), we get
f(a+hb+k)—f(ab)
=kf,(a+ h,b+0k) + h{f,(a,b) +e(h)} (4)

Since f, is bounded in N and Il(irrék = 0, therefore Il(irré kfy(a+h,b+
0k) =0
~ From (4),
lim f(a+hb+k)—f(ab)=0

(h,k)—(0,0)
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(h,kl)lir(lo,o) fla@a+hb+k)=f(ab)

This showsthat f iscontinuousat (a, b).

o Note: The above condition is not necessary. For example, consider the

function

C(xl+1yl @) # (0,0)
f("'”‘{ 0, (xy) =(00)

Let € > 0 be arbitrary. Then

f G y) = FO,0) = [lx| + |yl| = x| + |yl <2yx2 +y2 <e
holdsif \/x? + y? < § = €/2.

Therefore f(x, y) is continuous at (0,0) whenever \/x? + y? < § holds.
But

f(h,O)—f(O,O)_l. Al
= 11im —

fX(O'O) - ’IIILT(I) h h-0 h

which does not exist. Similarly we can show that f,(0,0) does not exist.

»  Theorem5.1:Let D € R? f: D - Rbeafunction, f, and f, both exist
and bebounded in D. Then f iscontinuousin D.
Proof: Let (a,b) € D.
We choose h and k suchthat (a + h,b), (a,b + k),(a + h,b + k) € D.
Now
fla+hb+k)—f(ab)
=f(a+hb+k)—f(a+hb)+ f(a+hb)—f(ab) (1)
Lett,;(y) = f(a+ h,y) and t;(x) = f(x,b).
Thent; (y) = fy(a + hy) and t5(x) = £, (x, b).
Since f, and f, exist in the D, therefore ¢{(y) and t;(x) both exist in
[b,b + k] and [a, a + h] respectively.
Therefore by Lagrange’s mean value theorem of differential calculus, there
exists 84,6, € (0,1) such that
t;(b+ k) —t;(b) = kt;(b + 0,k)
= f(a+hb+k)—f(a+hb)=kf,(a+hb+06:k) (2)
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and
t,(a + h) — t,(a) = hty(a + 6,h)
= f(a+hb)—f(a+hb) =hf.(a+6,hDb) 3)
From (1), (2) and (3), we get
fla+hb+k)—f(ab)=kf,(a+hb+06:k)+hf,(a+0h,b) (4

Since f, and f, are bounded in D and }llr%h = ]lclrr(l)k = 0, therefore

]l(irr(l) kfy,(a+ h,b+ 6k) =0 and ]lclrrg) hf.(a + 6,h,b) = 0.
~ From (4),

wdim f(a+hb+k) = f(ab)=0

=, din (Oo)f(a+h b+k)=f(ab)

This showsthat f iscontinuous at (a, b).

1.6. Differentiability

Let D € R?,f:D - R beafunction and (a, b) be an interior point of D. f
issaid to be differentiable at (a, b) if for (a + h,b + k) € D

f(a+hb+k)— f(a,b) = Ah + Bk + he(h, k) + kn(h, k)

where A and B are independent of h and k and €, n are functionsof h and k
such that (¢,17) — (0,0) as (h, k) — (0,0).

6.1 Necessary condition for differentiability

Let D be an open subset of R?, f:D — R be a function and (a, b) be an
interior point of D. If f isdifferentiable a (a, b), then

(i)  fi(a,b) and f, (a, b) exist

(i)  fiscontinuousat (a,b).

Proof: Since f isdifferentiable at (a, b), sofor (a + h,b + k) € D
f(a+hb+k)—f(ab) =Ah+ Bk + he(h, k) + kn(h, k) (D
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where A and B are independent of h and k and ¢, are functions of h and k

such that (¢,n) — (0,0) as (h, k) — (0,0).

Wetakeh # 0,k = 0. Then (1) becomes
f(a+ h,b) — f(a,b) = Ah + he = h(A + €)

~ fla+hb+k)—f(ab)
= lim =
h—-0 h

A [+e—>0ash - 0]

:fx(a:b) =A
Similarly taking h = 0,k # 0, we obtain f,,(a,b) = B.
Again from (1),

(h,kl)lir%o,o){f(a +hb+k)—f(ab)}=0

= Wy f @+ b+l =f(ab)

This showsthat f iscontinuous at (a, b).

o Note: The above condition is not sufficient, i.e. if f, and f, exist for a

function f at apoint (a,b) € D and f is continuous a (a, b), then the function

may not be differentiable at (a, b). For example, consider

x3_y3
foy) =iz vyz BN F00) (1)
0, (@) =00
Now
h,0) — (0,0 h
00 - i [0 SOD o
and
0,k)—£(0,0 —k
500 = [OOSOD Tk, )

Therefore £, (0,0) and £,,(0,0) both exist.

Also f iscontinuous a (0,0) [exercise 3.3, problem 1.(i)].

We now check whether f isdifferentiable at (0,0).

If possible, let f be differentiable at (0,0). Then we may write
f(h,k) — £(0,0) = hf,(0,0) + kf,(0,0) + he + kn
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= f(h k) — £(0,0) = h{f,(0,0) + €} + k{f,,(0,0) + n} (4)

where €,n are functions of h and k such that (¢,1) - (0,0) as (h, k) -
(0,0).

Thus from (1), (2), (3) and (4), we obtain

h3_k3

Let (h, k) — (0,0) along the path k = mh. Then from (5), we have

h3(1 —m?)
hz(l—+Tn2)=h{1+6+m(_1+n)}
(1—m3’)_1 .

As (h, k) - (0,0), the L.H.S of (6) tendsto (1 —m3)/(1 + m?) but the
R.H.Stendsto 1 — m.

ThusL.H.S+# R.H.S, in general. Hence f is not differentiable at (0,0).

6.1.1 Exercise

1. Show that
2 (%) % (0,0
fmw=%ﬂ+ﬁ' ' '
o , (x,y) =(0,0)

isnot differentiableat (0, 0).
—  Similar to the problem in previous note.
2. Showthat f(x,y) = \/|xy| isnot differentiable at (0, 0).
—  If possible, let f be differentiable at (0,0). Then we may write
f(h k) —£(0,0)
= h(f,(0,0) + €) + k(f,(0,0) + 1) (1)
where e andn arefunctionsof h and k and (¢,17) — (0,0) as (h, k) — (0,0).

Now
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. f(h,0O)—f(0,0) . 0-0
lim =lim——=0
h—0 h h-0 h

and

. fO,k)—f00) ~ 0-0
lim = lim
k-0 k k—0

Therefore from (1),

f(h,k) — £(0,0) = he + kn

= |Vhk| = he + kn
Let (h,k) - (0,0) aong the path k = mh. Then the above equation

becomes
hvm = h(e + mn)
= Vm = (e + mn)

as (h k) - (0,0), L.H.S » vm and RH.S - 0. ~ L.HS # RH.S, in

general.
Hence f is not differentiable a (0,0).
3. Show that
flx,y) = x sin (4tan‘1 %) x>0
0 , x=0
isnot differentiableat (0, 0).
4. Show that
x2 — y2
Fy) = @y (x,¥) # (0,0)
0 , ((xy)=1(00)
isdifferentiableat (0, 0).
—  Here
00 = Iy RS 2 e <o
and
. fQO,k)—-f(00) ~ 0-0
STk e O
Now
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hZ—kZ_h h%k N hk?
h2+ k2 hZ4+ k%  h%+ k2

where (h, k) # (0,0).

h?%k _
e andn(h, k) = —

Then (¢,1) - (0,0) as (h, k) — (0,0).
Thus
f(h, k) = £(0,0) = h{£,(0,0) + €} + k{f,,(0,0) + n}
where e andn arefunctionsof h and k and (¢,17) — (0,0) as(h, k) — (0,0).
Hence f isdifferentiable at (0,0).
5. Show that

hk?
h2+k?

Lete(h k) =

x® —2y*

fx,y) =4 x> +y*’
0 , x*+y*=0

x> +y>#0

isdifferentiableat (0, 0).

[Hint: Here £,(0,0) = £,(0,0) = 0 and (h, k) = h*/(h* + k%), n(h, k) =
—2k3/(h* + k?)]
6. Show that

x, |yl <l«
x, |yl =«

ey ={_
isnot differentiableat (0, 0).

7. Letf(x,y)=g (,/xz + yz) where

2 sin - +0
g(z)z{z smz, Z
0o , z=0

Show that f isdifferentiableat (0, 0) but f, and f, are not continuous

at (0,0).

—  Here
(x? + y?) sin (;> x2+y2#0
flx,y) = Jx2 4 y2
0 ,  x*+y% =0
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Now

1
h? sin —

. f(h0O)—=f(00) 1h] _ .. 1
£:(0,0) = }ll_r)r(l) A = }zl—%T = }llm h smm 0
and

FO0—r00) . Ksingg 1
f,(0,0) = zlcl—r}(I) . = llcl—%T = Il{lm k smm =0
Therefore

— (h? + k?) sin (\/ﬁ)

—h {h sin (\/ﬁ)} 4k {k sin (\/ﬁ)}

where h? + k? # 0.

Let e(h,k) = hsin (F) andn(h,k) = ksin (ﬁ)
Then (e,n) - (0,0) as (h, k) — (0,0).
Thus

f(h k) = £(0,0) = h{£,(0,0) + €} + k{£,(0,0) + 1}
where e andn arefunctionsof h and k and (¢,1) — (0,0) as(h, k) — (0,0).
Hence f isdifferentiable at (0,0).

Now

1 X 1
2x sin — cos ) x24+y2#0
f;C(xry)z <\/x2+y2> \/x2+y2 /x2 +y2
0 ,  x*+y*=0

Let (x,y) — (0,0) along the path y = mx, wherex > 0. Therefore

1 X 1
(x,y) = hm [Zx sm( ) — cos
fx(xy 14+m?/ xV1+m? xV1+ m?

doesnot exist, therefore  lim £, (x, y) does not exist
(x,¥)—(0,0)

(x, J/) (0 0)

Aslim cos !
x—0 xV1+m?2

and consequently, f, isnot continuous at (0,0).
Agan
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1 y 1
2ysin< )— cos ) x2+y2#£0
fy(x;ZV): \/x2+y2 \/x2+y2 /x2+y2
0 ,  x*+y*=0

Due to symmetry, f,, is not continuous at (0,0).
6.2 Sufficient condition for differentiability

Let D be an open subset of R?, f:D - R be a function and (a, b) be an

interior point of D. If

(i)  fx(a,b) exists(or f,(a, b) exists)
(i)  fy iscontinuousat (a, b) (or f, iscontinuous at (a, b))

Then f isdifferentiable at (a, b).
Proof: Since f, is continuous at (a, b), so there existsanbd N of (a, b) inwhich
both f and f, are defined.

We choose (h, k) # (0,0) suchthat (a + h,b),(a + h,b + k) € N. Now

fla+hb+k)—f(ab)
= f(a+hb+k)—f(a+hb)+f(a+hk)—f(ab) (1)

Since f,.(a, b) exists, therefore

’lli_%f(a + h, b})l — f(a,b) _ f.(ab)

= f(a+hb)—f(ab) = hif,(a,b) + €} (2)
wheree isafunctionof hande - 0 ash — 0.

Lett(y) = f(a+hy). Thent'(y) = fy(a + h, ).
Since f, existsin N, so t’(y) existsin [b, b + k].

By Lagrange’s MVT of differential calculus, there exists 6 € (0,1) such that
t(b+k)—t(b) = kt'(b+ 6k)
= f(a+hb+k)—f(a+hb)=kf,(a+hb+06k) (3)
From (1), (2) and (3), we get
fla+hb+k)—f(ab)=kf,(a+hb+0k)+ h{f,(ab)+ e} (4)
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Since f, is continuous @ (a, b), SO

(h,kl)lir%o,o) fyla+h,b+0k) = f,(a,b)

= fy(a+hb+0k)=f,(ab)+n
wheren isafunction of (h, k) andn — 0 as(h, k) = (0,0).
Thus from (4), we have
fla+hb+k)—f(ab) = h{f(ab)+ e} + k{f,(a, b) +n}
where e andn arefunctionsof h and k and (¢,1) — (0,0) as(h, k) — (0,0).
Hence f isdifferentiable at (a, b).

Note: The converse of the theorem is not true. Let us consider the function
(5, .1 , . 1
x*sin—+y“sin—, (x,y) # (0,0)
x y
2 Sin = +0,y=0
f(x)=< X Slnx, X ’y_
1
3’251“;, x=0y#0
\ 0 (x,¥) = (0,0)
Now
1
00y — i T RO ZFO0) _ hzsmn_l. el o
fx( ,0) = hl_r)r(l) n = hl_r)r(l) A = h1_r>r(1) Smﬁ_
and
1
00y — i T @R FO0) kzsmz_l. esint o
(0, )—kl_r)r(l) = lim——= = lim k sin - =
Therefore
—_ 1 1 .
fx(0,0) — XSIDE— COS;, X ¥
0, X =
and
2y si ! L +0
sin—— cos—,
£,(0,0) = { <Y TEOSL. Y
0, y=0
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As lim cos - X and lim cos 1 do not exist, therefore neither 11m (6, y)

x-0 x—0 ( (0 O)
nor ( ) (0 0 fy(x,y) exists. Hence f, and f,, are not continuous at (0,0).
x,y)=
Now

1 1
f(O+h,0+k)—f(0,0)=h? sinﬁ+k2 sinE

where (h, k) # (0,0).

Lete = hsin1/handn = ksin1/k. Then e and n arefunctionsof h and k
and (¢,1) = (0,0) as(h, k) = (0,0).

Thus f(h, k) — £(0,0) = h{f,(0,0) + €} + k{f,(0,0) + n} where € and 1
arefunctionsof h and k and (¢,17) — (0,0) as (h, k) — (0,0).

Hence f isdifferentiable at (0,0).

6.2.1 Exercise

1. L et
(, .1 ., 1
x“sin—+ y“sin—, (x,y) # (0,0)
x y
2 sin & #0,y=0
fx) = 4 x"sin_, x+0,y=
1
yzsin;, x=0,y#0
\ 0 (x,¥) = (0,0)

Show that f does not satisfy the sufficient condition of differentiability
although f isdifferentiableat (0, 0).

2. Show that
2 (xy) = (0,0
fox,y) =1 /x +y% ’ '
0 ., (xy)=(00)

satisfies the sufficient condition of differentiability.

[Hint: Show that f iscontinuousat (0,0) and £,.(0,0) and £,,(0,0) both exist]
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Chapter 2

Matrices

2: Introduction of Matrices

2.1 Definition 1:

A rectangular arrangement of mn numbers, in m rows and n columns and enclosed within a bracket is
called a matrix. We shall denote matrices by capital letters as A,B, C etc.

Qg Cyg b Qin

4= : : = {mi i }

Cimg @ mz " Bmn

M =n

A is a matrix of order m by n.

Remark: A matrix is not just a collection of elements but every element has assigned a definite position in
a particular row and column.

2.2 Special Types of Matrices:

1. Square matrix:

A matrix in which numbers of rows are equal to number of columns is called a square
matrix.

Example:

Gy Gyz  Oyz 2 3 -8
A= |0y axp ﬂ:!) E= |0 -3 —4-)
O33 Ogz Og 6 8 Q

2. Diagonal matrix:

A square matrix A = {ﬂ-i_i'}ﬂ on is called a diagonal matrix if each of its non-diagonal

element is zero.
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Thatis a; =0 if i #j and at least one element a; = 0.

Example:

a, 0 0 2 0 0
A= (n - n) B= (n -3 n)
0 0 asx 0 0 9

3. Identity Matrix

A diagonal matrix whose diagonal elements are equal to 1 is called identity
matrix and denoted by [,,.

. (0 ifiEj
That is afi'_[l ifi=J

Example:

10 0
I!:DID)
00 1

4. Upper Triangular matrix:

A square matrix said to be a Upper triangular matrix if a; =0 if i =J.

Example:

B33 By3 Oz 2 0 8
A= 0 oy C!':!) E= |0 -2 5)
0 0 a4 oo 7

5. Lower Triangular Matrix:

A square matrix said to be a Lower triangular matrix if a; =0 if i <.

Example:

g 0 0 -1 0
A= |ay a3 0 BE= 17 0
Ogy gz O 9 8

6. Symmetric Matrix:

[t
[t

A square matrix A = {agj-}r‘ wsaid to be a symmetric if a;; = a;; for alliand j.
Example:

Q3  Gy3  Oyz g -2 7
A= |8y @Gz ﬂ':!) E=|-2 -9 3)
ﬂlq Hmng RE! ? 3 5

& L
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7. Skew- Symmetric Matrix:

A square matrix A = {ﬂ-g_i'}ﬂ wsaid to be a skew-symmetric if a;; = —a;; for all i and j.
Example:
Gyg Gz Gz g -2 7
A= | —oyz Bz I3:!) E= 2 -9 3)
—Gy3 —Oz3 GOgg -7 -3 5

8. Zero Matrix:

A matrix whose all elements are zero is called as Zero Matrix and order #n = m Zero

matrix denoted by 0,501 -

Example:
o o0
O30, =10 0
o o0

9. Row Vector

A matrix consists a single row is called as a row vector or row matrix.
Example:

A= (g 6 8] E=1(7 4 -3)
10. Column Vector

A matrix consists a single column is called a column vector or column matrix.

Example:

Gy Q
A= (G:L) B = (_?)
Cay 3
2.3: Matrix Algebra
2.3.1. Equality of two matrices:

Two matrices A and B are said to be equal if

(i) They are of same order.
(i) Their corresponding elements are equal.

Thatisif A=(a;) andB = (b;) thenay; = by foralliand].
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2.3.2. Scalar multiple of a matrix

Let k be a scalar then scalar product of matrix A = I'C::e.._-j-::lrr - given denoted by kA and

given by KA = {k“‘fi}w O
kali kﬂ-i: ree kﬂ-]_i"!
kA = ( : : )
Ky KOy o Ky

2.3.3. Addition of two matrices:

Let A = {E'U}rr >cmand E = {Elg_i'} are two matrices with same order then sum of the

M xn
two matrices are given by

A+E = {I'}._'_i'} + {bij'}m I ( o + &i_i' D sen

M xn

Example 1: let

=0T Ym0,

Find () 5B (i) A+B (i) 4A—2B (iv) 0 A

2.3.4. Multiplication of two matrices:

Two matrices A and B are said to be confirmable for product AB if number of columns in A equals

to the number of rows in matrix B. Let A = be two {a.-j-} and B = {g,l.j.}
- mxn -

noEr

matrices the product matrix C= AB, is matrix of order mx r where

Cij = Y. by = mpby;+ @by + e F A by

2 3

. _ M1 2z -3 4 _| -3 0

Example 2: Let A= {U 253 1) and E = 6 5
-1 -3

Calculate (i) AB (ii) BA
(iii)is AB=BA?
2.3.5. Integral power of Matrices:
Let A be a square matrix of order n, and m be positive integer then we define
AT = AxAxA....xA (m times multiplication)
2.3.6. Properties of the Matrices

Let A, B and C are three matrices and 4 and u are scalars then

() A+B+C)=(A+B)+C Associative Law

2.4



(i) ACA+B)= 1A+ AB Distributive law

(i) Apd) =(AuA Associative Law
(iv) (A4)B = A(AE) Associative Law
(v) ABC) =(4B)C Associative Law
(viy A(B+C)=AE+AC Distributive law

2.3.7. Transpose:
The transpose of matrix A = {agj-}w o’ written A° (.#1' or AT) is the matrix obtained
by writing the rows of A in order as columns.

Thatis 4 = (a;) .

Properties of Transpose:
0) (A+B) =" + BY)
(i) (A7 =A
(iii) (kA)® =Kk A" for scalar k.
(iv) (AB)t = BUAF

Example 3: Using the following matrices A and B, Verify the transpose properties
1 -1 2z -2

A= (5 —4 3 ) , B = (—1

1 -2 -3 -2

Proof: (i) Let a;; and b;; are the (i) Relement of the matrix A and B respectively. Then
a;; + by; is the (1, j)°* element of matrix A + B and it is (.1)** element of the matrix
(A+EBE)f

= oo

|
=
\"‘-_-""F-

Also a; and b;; are the (5. {)**element of the matrix A" and B ‘respectively. Therefore

a;+ by is the (j. 7)™ element of the matrix A" + BF

(i) Let (i)™ element of the matrix A is a;;, it is (j. {)** element of the A® then it is
(i)™ element of the matrix (A°)*

(i) try

(V) o= Efiim; bp = auby;+ Guby;+ e d G by is the (4 k)™ element of

the AB It is result of the multiplication of the i row and k™ column and it is
{k.i)"® element of the matrix (AE)".

BTA" | (k.1)™ element is the multiplication of k™ row of Bwith i column of A,
Thatis k" column of B with i row of A.
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2.3.8 A square matrix A is said to be symmetric if A = AF.

Example 4:

1 -1 1
A= (—1 —4 —2) , A is symmetric by the definition of symmetric matrix.

1 -2 -3

Then
1 -1 1

A=[-1 -4 —2)

1 -2 -3

Thatis A = A°

2.3.9 A square matrix A is said to be skew- symmetric if 4 = — A°
Example 5:

1 3 -1
A=|-3 -5 E)
1 g 94

(i) AA" and A"A are both symmetric.

(i) A+ Af is a symmetric matrix.

(iii) A — A" is a skew-symmetric matrix.

(iv) If A is a symmetric matrix and m is any positive integer then A™is also symmetric.
(v) If Ais skew symmetric matrix then odd integral powers of A is skew symmetric,

while positive even integral powers of A is symmetric.

If A and B are symmetric matrices then

(vi) (4B + BA) is symmetric.
(viiy (AB — BA) is skew-symmetric.

Exercise 1: Verify the (i), (ii) and (iii) using the following matrix A.

1 3 3
A=|-3 -3 1[])
1 g 9

2.4. Determinant, Minor and Adjoint Matrices

Definition 2.4.1:

Let A= {ﬂ-[_i'}r' n be a square matrix of order n , then the number |4l called determinant

of the matrix A.

(i) Determinant of 2 = 2 matrix
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Let A= (zii 21) then 14l = |sz ez

21 i = Gypyfyy— Oyl
(i) Determinant of 3 = 3 matrix
Qi3 Oz Oy
LetB=| Gz1 G ﬂ':z)
Bzp B3z Oa3
Ozz  Oiz Byy  Gag By Bag
T e I 2
Then |E| 8y A Byq G2 G + o N
Bl = ay (05305 — 03505;) — ay; (agy 023 — a0, ) fy3 ( 8z B3 — B4 8g7 )

Exercise 2: Calculate the determinants of the following matrices

1 3 4 2 -3 4
(i)A:(z 6 s) (ii)B:(S 6 ?)
19 5 g o 1

2.4.2 Properties of the Determinant:
a. The determinant of a matrix A and its transpose 4" are equal.
lal = 1a%]
b. Let A be a square matrix
(i) If A has a row (column) of zeros then |Al = 0.
(ii) If A has two identical rows ( or columns) then |4l = 0.

c. If Ais triangular matrix then |4l is product of the diagonal elements.
d. If Ais a square matrix of order n and k is a scalar then |kAl = k™14l

2.4.3 Singular Matrix

If A is square matrix of order n, the A is called singular matrix when |4l =0 and non-
singular otherwise.

2.4.4 Minor and Cofactors:

Let A = {a[j-}r xr|is a square matrix. Then IM;; denote a sub matrix of A with order (n-1) =

(n-1) obtained by deleting its i**row and j** column. The determinant
minor of the element a;; of A.

Ilf._-j-| is called the

The cofactor of a;; denoted by 4;; and is equal toi—1)"*/

3 4 2
Exercise 3:Let A=12 3 1)

3 -2 1

M|

® Compute determinant of A.
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(i) Find the cofactor matrix.

2.4.5 Adjoin Matrix:

The transpose of the matrix of cofactors of the element a;;of A denoted by adj A is called
adjoin of matrix A.

Example 6: Find the adjoin matrix of the above example.

Theorem 2.4.1:
For any square matrix A,

ACadjA) = (adj A JA = Al I where | is the identity matrix of same order.

Proof: Let A = (ay;)

nxEn

Since A is a square matrix of order n, then adj A also in same order.

Consider
Gy Byz e C1p
er Enn Qs
A= = = | then
Ony  Gpz Cnn
Ay Apg e Agp
adj A = Ay Ay e Ap
-Hr!i "qr!: Hr!r!
Now consider the product A {adj A )
‘Qyy Ogp e GinYy fA A e An
T Ran v ann G - P 9
A(adja)=| % ™= || Az Ax Az
Bnt Onz e Bpnd NApy Apg e Apg
Eiorag Ay Efoiag Ay o EFogayj Ay
| Eerey Ay Zfaey Ay e L1 az) Ay
Eferan; Ay Lfcran Ay e D
lal o 0
o 4l 0
0 0 0
o0 0 ... Al
(as we know that E7.; a;; A;; = |4l and Ef.; a5 Ay =0 wheni = k)
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L TS e |
Lo T - T e

= lal

=N =R=N

= |4l I, Where I, is unit matrix of order n.
Theorem 2.4.2: If A is a non-singular matrix of order n, then ladj 4] = |AI"~2.

Proof: By the theorem 1

AladjA) = l4l1

|4 Cadj 401 = |14 1|
Alladj Al = |AI7
ladj Al = 4"

Theorem 2.4.3: If A and B are two square matrices of order n then
adj(AB) = (adj BXadj A)
Proof: Bythetheorem1 Al(adjA) = |AlI
Therefore (AE) adj (AB) = adj (ABJAB = |ABlI
Consider (AB){adj B adj A),
(AB)(adj B adjA) = A(B adj B) adj A
= A(IBII) adj A
= |B| (A adj 4)

EIRFEr

|AllE] 1

|AB|I

Also consider (adj B .adj AJAB
(adj B .adj A)JAB = adj B (adj AA)B

=adj B |A|l I B

|Aladj B B

lAllE] 1

I
.
a5 ]
—

=

=
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Therefore from (i) and (ii) we conclude that
adj(AB) = (adj A)(adj B)
Some results of adjoint

() For any square matrix A (adj A)F = adj A'
(i) The adjoint of an identity matrix is the identity matrix.
(i) The adjoint of a symmetric matrix is a symmetric matrix.

2.5: Inverse of a Matrix and Elementary Row Operations
2.5.1 Inverse of a Matrix
Definition 5.1:

If A and B are two matrices such that 48 = EA = I | then each is said to be inverse of the other.
The inverse of A is denoted by A™".

Theorem 2.5.1: (Existence of the Inverse)

The necessary and sufficient condition for a square matrix A to have an inverse is that |4| =0
(That is A is non singular).

Proof: (i) The necessary condition
Let A be a square matrix of order n and B is inverse of it, then
ABE =1
lAB| =1AllBl =1
Therefore |4l = 0.
(ii) The sufficient condition:

If |4l = 0, the we define the matrix B such that
B= = (adj4)
R
1 Cay_ L :
Then AB =4~ {adj 4) = i Aladj 4)
1
== =1
o Al
— 1 1 1
= — 1 = — 1 = — :I
Similarly B4 = (adj A)A a Aladj 4) T lAl1
Thus AE = BEA = I hence B is inverse of A and is given by 4~* = ﬁ (adj A)
Theorem 2.5.2: (Uniqueness of the Inverse)

Inverse of a matrix if it exists is unique.
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Proof: Let B and C are inverse s of the matrix A then
AE=EBEA=1 and AC =CA =1
B(AC) = BI
(BAIC =B
C=E

2 3 -4
Example 6: Let 4 = ({} —4 2 ) find A~"
1 -1 &

Theorem 2.5.3: (Reversal law of the inverse of product)

If A and B are two non-singular matrices of order n, then (AB) is also non singular and
(AB)™* = B~*41.

Proof:

Since A and B are non-singular |4l = 0 and |B| = 0, therefore |4llB| = 0, then |4B| =0
Consider (AB)(B~*A™%) = A(BBhA~!

= AlAt=44"t =1

Similarly (B™*A™*) (AEB) B-H{ATA)B

= B7Y[B = BB =1 ... )
From (1) and (2)

(AB)(B~*A™) =(B*4™) (4B) = I

Therefore by the definition and uniqueness of the inverse (4B}y* = B~tA™?

Corollary 5.1:  If  Ajd; wwwwna Ay are

non  singular
;T PP

matrices of
wAm)Th = ATRATT

order n, then
Rt

Theorem 2.5.4: If A is a non-singular matrix of order n then (A%}~ = (471)F

Proof: Since |A"] = |4l = Otherefore the matrix A® is non-singular and  (A®)~* exists.
Let A4 t=A4"t4=1]
Taking transpose on both sides we get
(A4 = (4 Faf =17, =1,
(4724) = 4542 =17 =1,

Therefore AT(47%)F = (A71)F4F =1,
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Thatis (4~ = = (472,

Theorem 2.5.5: If A is a non-singular matrix , k is non zero scalar, then (4} ~* =

Proof: Since A is non-singular matrix A7 exits.
Let consider (kA) {%A‘lj = (k X fjl (Aa ) =1
1o, g%, .
Therefore (Eﬂ ] is inverse of kA

By uniqueness if inverse  (k4)~*= -4~*

LS

Theorem 2.5.6: If A is a non-singular matrix then

1
AT = =,
| | al

Proof: Since A is non-singular matrix, A=* exits and we have
AATt =
Therefore |447* = lAll4~* =l =1
Then A~ = ﬁ

2.5.2 Elementary Transformations:

EH—L
" .

Some operations on matrices called as elementary transformations. There are six types
of elementary transformations, three of then are row transformations and other three of

them are column transformations. There are as follows

0] Interchange of any two rows or columns.
(i) Multiplication of the elements of any row (or column) by a hon zero number K.
(i) Multiplication to elements of any row or column by a scalar k and addition of it to

the corresponding elements of any other row or column.

We adopt the following notations for above transformations

(i) Interchange of i" row and |" row is denoted byR; « R;.
(i) Multiplication by k to all elements in the it rowR; — kR;.
(iii) Multiplication to elements of jth row by k and adding them to the corresponding

elements of i"" row is denoted byR; — R; + kR;.

2.5.3 Equivalent Matrix:

A matrix B is said to be equivalent to a matrix A if B can be obtained from A, by for forming finitely

many successive elementary transformations on a matrix A.

Denoted by A~ B.
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2.5.4 Rank of a Matrix:

Definition 5.2:

A positive integer ‘r’ is said to be the rank of a non- zero matrix A if

() There exists at least one non-zero minor of order r of A and
(ii) Every minor of order greater than r of A is zero.

The rank of a matrix A is denoted by g(A]).
2.5.5 Echelon Matrices:

Definition 5.3:

A matrix A = (g;;} is said to be echelon form (echelon matrix) if the number of zeros
preceding the first non zero entry of a row increasing by row until zero rows remain.

In particular, an echelon matrix is called a row reduced echelon matrix if the distinguished
elements are

0] The only non- zero elements in their respective columns.
(ii) Each equal to 1.

Remark: The rank of a matrix in echelon form is equal to the number of non-zero rows of the matrix.

Example 7.

Reduce following matrices to row reduce echelon form

T -2 3 -1
() A=(2 -1 2 2)

3 1 2 3

T2 -1 2 1
(i) E= (2 4 1 =2 3)

38 2 -6 5

2.6: Solution of System of Linear Equation by Matrix Method

2.6.1 Solution of the linear system AX=B

We now study how to find the solution of system of m linear equations in n unknowns.

Consider the system of equations in UNKNOWNS X3 . X3 . e ce e cis civ e Xy 8S
BTy + BioXg T o i By Xy = EJ:L
By X+ QpXsF o s Gy Xy = EJ:
Opy X3+ GppXp+ Gpn¥n = by
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is called system of linear equations with n UNKNOWNS X3 .X; . vev i s e w1 the
constants &y 8. v wnen e .e 0 by are all zero then the system is said to be homogeneous type.

The above system can be put in the matrix form as

AX=B

Oyp @3z ' Oin Xy by

X b,

Where A= ( : : ) X=[ - B=| -~
Opg Bpz " Oan

X y. .

The matrix A = (g;; Jn.n is called coefficient matrix, the matrix X is called matrix of unknowns and
B is called as matrix of constants, matrices X and B are of order n x 1.

Definition 6.1: (consistent)

A set of values of x;.xz.uwwe s Xywhich satisfy all these equations

simultaneously is called the solution of the system. If the system has at least one solution
then the equations are said to be consistent otherwise they are said to be inconsistent.

Theorem 2.5.1:

A system of m equations in h unknowns represented by the matrix equation AX= B is
consistent if and only if 2(4) = p(A.BE) . That is the rank of matrix A is equal to rank of

augment matrix (4, )
Theorem 2.5.2:

If A be an non-singular matrix, X be an n x 1 matrix and B be an n x 7 matrix then the
system of equations AX= B has a unique solution.

1) AX =B

| |
Consistent if p{A)= p(4,B) =r Inconsistent if p{4) = p(A,B)
|

Unique solution if r=n Infinite solution if r<n
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)

AX =0 ( Allwayes consistant)

If p(A) =7 = nTrivial solution If p(A) =7 =< n Infinite solutions

Therefore every system of linear equations solutions under one of the following:

0] There is no solution
(ii) There is a unique solution
(iii) There are more than one solution

Methods of solving system of linear Equations:
6.1 Method of inversesion:
Consider the matrix equation
Consider the matrix equation
AX=E  Where ldl 20
Pre multiplying by A=*, we have
At (Ax })=A'B
X=A'E
Thus AX = B, has only one solution if 4! =0 and is givenby ¥ = A~*B.

6.2 Using Elementary row operations: (Gaussian Elimination)
Suppose the coefficient matrix is of the type m x n. That is we have m equations in n

unknowns Write matrix [A.B] and reduce it to Echelon augmented form by applying
elementary row transformations only.

Example 8: Solve the following system of linear equations using matrix method

(1) (i)
2x+y + —2z =10 x +2y—3z=-1

y + 10z=—-28 Ix—y+ 2z2=17

v+ 16z = —42 S5x +3y —4z=2
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Example 9: Determine the values of a so that the following system in unknowns x, y and z has

0] No solutions
(i) More than one solutions
(iii) A unique solution

x +y +z =10
2x+3y+az=10

x+ay + 3z=10

2.7: Eigen values and Eigenvectors:

If A is a square matrix of order n and X is a vector in , ( X cBfisidered as column maix), we are going to

study the properties of non-zero X, where AX are scalar multiples of one another. Such vectol'S arise
naturally in the study of vibrations, electrical systems, genetics, chemical reactions, quantum mechanics,
economics and geometry.

Definition 7.1:
If A is a square matrix of order n , then a non-zero vector X in R"is called eigenvector of A if A¥ = iX

for some scalar 4. The scalar 4 is called an eigenvalue of A, and X is said to be an eigenvector of A
corresponding to 4.

Remark: Eigen values are also called proper values or characteristic values.

Example 10: The vector (T

; 3{})

] is an eigenvector of A= (8 4

Theorem 2.7.1: If A is a square matrix of order n ardd is a real number, thentis an eigenvalue of A if and
onlyif Al —A4l=10

Proof: If & is an eigenvalue of A, the there exist a non-zero X a vector in R" such that AX = AX.
AX =X
AX = AIX Where | is a identity matrix of order n.
r-Alx=20

The equation has trivial solution when if and only if |4l = 0. The equation has non-zero solution if
and only if 1{A —AI'Jl=0.

Conversely , if (A — AI J| = 0 then by the result there will be a non-zero solution for the equation,

(A-A1lx=0
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That is, there will a non-zero X in A" such that A¥ = 1X, which shows that A is an eigenvalue of A.

Example 11: Find the eigen values of the matrixes
2 1 1
0 a=(2 %) (i B=(2 3 4)
-1 -1 =2
Theorem 2.7.2:

If Aisann xn matrixand 4 is a real number, then the following are equivalent:

(i) Ais an eigenvalue of A.

(i) The system of equations (A — AJ¥ =0 has non-trivial solutions.
(i) There is a non-zero vector X in B™ such that AX = il

(iv) Is a solution of the characteristic equation {4 — i1}l = 0.

Definition 7.2:

Let Abe anthe = xn matrix and .1 be the eigen value of A. The set of all vectors X in B™ which satisfy
identity  4x =¥ is called the eigen space of a corresponding to 4. This is denoted by E{i} .

Remark:

The eigenvectors of A corresponding to an eigen value 4 are the non-zero vectors of X that satisfy
AX = iI. Equivalently the eigen vectors corresponding to 4 are the non zero in the solution space of
(Al — A)X = 0. Therefore, the eigen space is the set of all non-zero X that satisfy (4 — I }¥ =0 with
trivial solution in addition.

Steps to obtain eigen values and eigen vectors

Step |: For all real numbers 4 form the matrix Al — 4
Step II: Evaluate I{4 —AI'}l  That is characteristic polynomial of A.

Step lll: Consider the equation {4 — 11 }l =0 ( The characteristic equation of A) Solve the equation
for Let 4y.d;.4z. 000004y be eigen values of A thus calculated.

Step IV: For each 1; consider the equation (i] — A )X =0

Find the solution space of this system which an eigen space E{i;} of A, corresponding to
the eigen value 4; of A. Repeat thisforeach 4; i=12......n

Step V: From step IV , we can find basis and dimension for each eigen space E(i;} for

i=12, .
Example 12:
Find (i) Characteristic polynomial

(i)  Eigen values
(i)  Basis for the eigen space of a matrix
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A= (S _[]1)
Example 13:

Find eigen values of the matrix

2 1 1
A=|2 3 4)
-1 -1 -2

Also eigen space corresponding to each value of A. Further find basis and dimension for the same.

2.7.2 Diagonalization:

Definition 7.3: A square matrix A is called diagonalizable if there exists an invertible matrix P such that
PT4P isa diagonal matrix, the matrix P is said to diagonalizable A.

Theorem 2.7.3: If A is a square matrix of order n, then the following are equivalent.

(i) Alisdiagonizible.
(i) A bhas n linearly independent eigenvectors.

Procedure for diagonalizing a matrix

Step I: Find n linearly independent eigenvectors of A, say ;. Fa. v e o By

Step Il: From the matrix P having F;.Fs ... ... By as its column vectors.

Step Ill: The matrix P~TAP  will then be diagonal with 4445......4, as its successive diagonal
entries, where 4; is the eigenvalue corresponding to B, i = 1.2 v wuwnnum,

Example 14: Find a matrix P that diagonalizes

2 1 1
H=(2 3 4)
-1 -1 =2
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Exercise

a 2 4
1. Show that the square matrix 4 = (1 3 3) isasingular matrix.
-1 8 2

1 4 3
2.1f A= (ﬁ S)determine(i) 14l (i) Adj A

2
1 7 0
21 4
3. Find theinverse of thematrix A= 13 5 1)
2 0 B
_ {1 05 _ /12 .
4. 1f A_(U.E U.l) andl%‘—(2 3)de‘cermme

@) B-1 (i) AB (iii) B~!A

1 2 3
5. Consider the matrix 4 = (2 3 4)
1 5 7
0) Compute |4l (i) findadj A
(i) Verify Aladj A1 = |4l | (iv) Find A~*

6. Find the possible value of x can take, given that

_ fx= 3 _ 3 & _
a=( 2) B= (3 °) swhthatas = B4
3 n . . .
7.1f A= (_4‘ 1) find the values of m and n given that A< = mA + nA

8. Find the echelon form of matrix:

11 1 1
2 3 4 5 | Hencediscuss (1) unique solution (ii) many solutions and (iii) No solutions of
4 9 16 25

the following system and solve completely.
X +y +z=1
2Xx+3y +4z=5
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Ax+ 9y +16z2=25
010

9.1f matrix Ais |0 O 1| andl, theunit matrix of order 3, show that A° = pl +gA +rA? .
p g r

10. Let A be a sguare matrix

a.  Show that
(I—A) T =1+A+A42+4% if A*=0

b. Show that
(T—A) 1 =14+ A+AZ 4434 A" if Antl=

11. Find values of a,b and ¢ so that the graph of the polynomial ~ p(x) = ax? + bx + ¢ passes through
the points (1,2), (-1,6) and (2,3).

12. Find values of a,b and ¢ so that the graph of the polynomial plx) = ax® + bx + cpasses through
the points (-1,0) and has a horizontal tangent at (2,-9).

a 0 b 2
13. Let (a a 4 4) be the augmented matrix for a linear- system. For what value of aand b does
0 a 2 b

the system have

a unigue solution

aone- parameter solution
atwo parameter- solution
no solution

oo oo

14. Find amatrix K suchthat AKE = C given that
1 4 i) 6 -6
2 0 0
A:(_g 3) E= 01 _1) C‘=(5 -1 1)
1 -2 -4 0 0

a. For thetriangle below, use trigonometry to show
becosy + ccosffi =a

ccosa + acosy =5
acosfi + bcosa =c¢

And then apply Crame’s Rule to show

B:+ % —a?

2be

cosa =

Use the Cramer’s rule to obtain similar formulas for cos § and cos y.
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Chapter 3

Ordinary Differential Equations

3.1 First Order Ordinary Differential Equations

Relationship between rate of change of wvariables rather than wvanables
themselves gives rise to differential equations. Mathematical formulation of
most of the physical and engineering problems leads to differential equations.
It is very important for engineers and scientists to know inception and solving
of differential equations. These are of two types:

1) Ordinary Differential Equations {ODE)
2) Partial Differential Equations (PDE)

An ordinary differential equation (ODE) involves the derivatives of a
dependent variable wort. a single independent variable whereas a partial
differential equation (PDE) contains the derivatives of a dependent variable
w.r.l. two or more independent variables. In this chapter we will confine our
studies to ordinary differential equations.

Prelims:
» e = cos@ +isind
* cosf = %(E"“ + e™19)
; . _ 1.8 _ _—id
r 5inf = 2_E{I-: " e
» cosh@ = %{E‘E +e~ )

sinh @ = %(E” —-e7)

\r

F If u and v are functions of ¥ and u vanishes after a finite number of
differentiations

Juvdx=uv; - ulv; + uPvy —u¥y, + .-
Here u™is derivative of u™ " and v, is integral of v,,_,
For example
[ 2. sinx dx = (x*)(—cosx) — (2x)(—sinx) + (Z)(cos x)

=—x’cosx + 2xsinx+2cosx
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Order and Degree of Ordinary Differential Equations (ODE)
A general ODE of n" order can be represented in the form
dx ' dx?

the highest derivative occurring in it and the degree is the power of highest
derivative after it has been freed from all radical signs.

F [:!r.’, y,ﬁ d’y . %)—'{l Order of an ordinary differential equation is that of

% & . d?y 3 diy i .
The differential Equatmn(m+ 2],-') t==ty= 0 15 having order 3 and
degree 1.

Whereas (ﬂ + 2 )3 - ) + y = 0 is having order 3 and degree 3
dacd Y dx? y= & <l
; ; : dy _d'y :
The differential equation = = ~ 4y isof order 3 and degree 2.
oy 5 4

3.2 First Order Linear Differential Equations (Leibnitz’s Linear
Equations)

A first order linear differential equation is of the form % + Py=l, i/

where P and @ are functions of x alone or constants. To solve (A, multiplying
throughout by e/ P9 { here e/ 9% js known as Integrating Factor (IF)), we get

%EIP.:I:_I_ P},E‘rpdr =Qﬁjpdx

:}:]{},E[dej = G.EJ'P:!I
;.,},EJ'Pd.r_IQEJPd.de o

Algorithm to solve a first order linear differential equation (Leibnitz's
Equation)

1. Write the given equation in standard form i.e, z—’; + Py=0

2. Find the integrating factor (IF) = e/ Fdx
3. Solution is given by y. IF= [ @ IF dx + C , C is an arbitrary constant

Note: If the given equation is of the type 'l—i +Px =Q,
then IF = efP%and the solution is givenby x. IF= [ @ IF dy + C
ay x +ysinx

Example 1 Solve the differential equation: — =
i.r 1+easx

Solution: The given equation may be written as:
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ey gin ¥ x

3 (

s

dx L4cosx Y= 1405
This 1s a linear differential equation of the form E.:t% + Py=¢Q

sinx x

Where P = — and Q =

1+cosx 1+cosx

sinx
IF= ef #ax = ol ~5acom® = glogiitcoszl — 1 4 cosx

= Solution of (1) is given hy

X

y.(1+cosx)=[ (1+cosx)dx+C

14+ C0ST
2
=y(1 +ccm:r:]—x? ]

Example 2 Solve the differential equation: ffi— =1+x)+{1A=-¥)

Solution: The given equation may be written as:

L =
—+ty=2+x ... (@

This is a linear differential equation of the form % + Py=4(
Where P=1and §Q =2+ x

IF= el Pdxr— gfdx— gz

=~ Solution of (1 is given by

y.e¥=[(2+x)e* dx+C

=y =14x +Ce™

Example 3 Solve the differential equation: (x + y + 1) -?; =1

Solution: The given equation may be wnitten as:

T ax
E=xhysl BT r=y+1...4D

This 15 a linear differential equation of the form %+ Px=10
Where P==1and Q=y+1

IF= el Pa¥ = ol —dy = o-¥

» Solution of (1) is given by

x.e=[(y+1)e? dy+C

= xe¥==(y+2)e™¥+C

= x=—(y+2)+Ce
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Example 4 Solve the differential equation: xlog x ':—i+ y=2logx

Solution: The given equation may be written as:

i | 1 z .
T TP 4 b

dr = xlogx " e

This 3o 1 : : ; d
I'his 1s a linear differential equation of the form Ey + Py=4(Q

Where P = - and I!§'=E
qx x

xlo
IF = gl Pitx = Eiﬁdr = glog (lbgx) = Jpg ¥

& Solution of (1) is given by

¥. Iugr=_[§]agx dx +C

= ylogx = (logx)®+ C,Cisan arbitrary constant

. H ' ﬂ:r' Ez‘ﬂl-t+}l
Example 5 Solve the differential equation: e

Solution: The given equation may be written as:

it
dy 1 _ L 0

s — ——

dx «x iR

This 1s a linear differential equation of the fﬂﬂ]l% + Py=0Q

IF = el Pix = EJ:-_'_?E“ =g~ ix
* Solution of (1 is given by
— E\E
y. =YX = fi_EE—2$'E dx +C
—2% (L .
= y.e 1] = dx+C
= y. e =2%+C
3.3 Equations Reducible to Leibnitz’s Equations (Bernoulli’s Equations )

Dnfferential equation of the i"nrm% + Pf(y) = Qa(y). ..... B
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where P and @ are functions of x alone or constant, i1s called Bernoulli's

1 ay

equation. Dividing both sides of (B by g(¥), we get ——+ P——

aty) dx

e {’ﬂ = t, 8 reduces to Leibnitz’s equation.

Now put!;mg
: 4 5 dy 1 ¥ .
Example 6 Solve the differential equation: - o ol = Y D

Solution: The given equation may be written as:

=ty 1
g O L, S
e et o &
; i - d¥ ar 4
¥ = —_ :"I—: —_ .
Putting e L, =afme = i i3]
Using (3 in &), we get L TR - S ey
! T de X xe

e . . : o
(4 15 a linear differential equation of the form Ti + Pt=1(}

1

1
Where P——; and Q——;

1 -
IF = Ej-Plit_ EJ-—;GIA'_E—IEEI= E|I.'_IIEI ]_l
x

~ Solution of E:i"' is given by
j e d;r +

St = ——+
tx 2zt C

Substituting £ =e~¥

e ¥

S

X 2x%
=2x = e¥(2cx® + 1)
Example 7 Solve the differential equation:

=

d =
tany ==+ tanx = cosycos®x ......D

Solution: The given equation may be written as:

%ﬁ% -:f;:—i = cosix

= secy tan }r%+ secy tanx = cos’x ......2

Putting secy = t, secy lanyd}' - % ...... 3

Using 2 in (2, we get E; + (tanx)t = cos®x ......[H

. i J - F d
(4 is & linear differential equation of the form d—i + Ft=4Q

Fiv)
ani =0



Where P = tanx and @ = cos3x

IF = Ej'#dx — E,J tanxdx _ E,Iugise:ﬂ T
» Solution of @) is given by

t.secx = [cos?x.secx dx+C

= tsecx = [cos®x dx+C

1+eos 2x

= tsecx = J dx +C

sim2x

==t.:-.:ecx=rg+ +C

Substituting t = secy,

= 5&::;&:5&4::;?:% | m:“- C
. o : T ¥ i
Lo AN D
Example 8 Solve the differential equation: — = — T [
Solution: The given equation may be written as:
dx _ x4+ JEY
dy ¥
ot &
ay ¥ 3
Dividing throughout by vx
1 dy 1 | -
el e 2
vedy ¥ V¥
dx de T
Putting x = t. —d—y prrftee 3
1 1
Lisin in (2 we ety ot S )
sing @in @ e & 2y 2y @

gz : : . d
(4} is a linear differential equation of the form d—; + Pt=4@Q

1
Where F'_H and Q =

2V

g i 1
[F= efPde = J5® = g7loey _ /%5 -

sl

» Solution of 1) is given by

1 1 1 :
t.—=f—,— dx+C
5 g At
x =
t==[= dz+C

1 1
:I_:_ -|-
L= - logy+C



Substituting £ = x

\E - Eﬂgﬁ+l‘;‘

Example 9 5Solve the differental equation: x% + y= y*logx .....

Solution: The given equation may be written as;
iy oW F
dx + ¥  x IDEI

Dividing throughout by y?

g il
Using @ in 2), we get %—itz —ilﬂgx Oy &
(4! is a linear differential equation of the form %i- + Pt=4
Where P = -—-i and Q = —i']ugx

-1
IF = EchLt= E,J-—rdJ::E-Jugx: Elugx_1=

2
X
» Solution of (1) is given by

R =
ti= = =logx.= dx+C

1 = _ulu -4~ ”
=t. = [ leng;r dx+C

Putting log x = u. :—:dx = du, also x = "

=~L.i~ =— [ue™ du~+C

=.'.~t.]; =—[u(—e™)— 1(e™™)] +C
St.— = e u+1) +C

= t.;—= 1;{E.|:|;;;|rx+1} +

Substituting t:-}

::—T = 1:{]mgr+ 1) +C

:ai- = (logx+1) +Cx, Cis an arbitrary constant

3.7



Exercise 3.1

Solve the following differential equations:

1. e ¥sec’ydy = dx + xdy
Ans. {xet =C 4 tany)

(8]

. {x+1}%-—2}4={x+1]*

Ans. (y = (§+ x+c) (x + 1)%)

_1..|"'_ ek
:} dy _ ¢ Yoy Ans. V. EE-*-.:'F - Eﬁ FC

dx v
4. i—; = ("I'T}f:;?: -I‘v) Ans. x/1+ y2 +cosy =C
5 {x+2}*3}j—i=}t Ans. x= y*+Cy
0. i—imsx+}rsiﬂx=m Ans. 2./ysec x =tanx + 2C
g % —xy+ yle® =0 Ans. e* = y2(2x —C)
8 3x(1 —IE)}:2%+ (2x? = 1)y? = x3

Ans. y* = x + Cxv1 = x2

9, %‘% + ycos x = y'sin 2x Ang, (=" — )"0 = ¢
]ﬂ.% = g* ¥(g*—e¥) Ans.e¥ = Ce ™ + e* —1

3.4 Exact Differential Equations of First Order

A ditferential equation of the form M{x, y)dx + N{x,vidy = 0 15 said to be

exact 1f it can be directly obtained from 1ts primitive by differentiation.

Theorem: The necessary and sufficient condition for the equation
an

M{x, v)dx + N(x,y)dy = 0 to be exact is Z—: ==

Working rule to solve an exact differential equation
1. For the equation M(x, v)dx + N{x, ¥)dy = 0, check the condition for
BN

exactness 1.e oM =
T Ay ax

2. Solution of the given differential equarion is given by
fM{_taking ¥ as constant) dx + J-N{l:erms not containg x)dy = €

Example 10 Solve the differential equation:
(e* +1)cosxdx+ e’sinxdy=0 ... D
Solution: M = (e + 1)cosx , N =e¥sinx

aM ¥ aN ¥
S =870 X, —=e"{xx
ay ox
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aM _ AN . : y —
3y 3y EIVED differential equation is exact.

Solution of (L) is given by:

[(e¥ + 1)cosx dx + [0dy=C
¥ constant

= (e + 1)sinx =C
Example 11 Solve the differential equation:
(secxtanx tany — e* Jdx + (secx sec®y)dy =0 ..., @

Solution; M = secxtanx tany — e*, N = secx sec®y

M = secxtanx sec?y, 2o = secx tanx sec?
a3 . ¥ dx Y
am aN ; ; ; : ;
By = e - Eiven differential equation is exact.
Solution of (1) is given by:

J(secxtanx tany — e*)dx + [0dy=¢C
Vv constant
= secxtany— e*=0C

Example 12 Solve the differential equation:
[}' (] + i) + ::crs;v] dx + [x +logx —xsinyldy=0....(1

Solution: M =y (1 +%) +cosy, N=x+logx —xsiny

am ! . oy : '
= (1 +;) — sy, = (1 +;) —siny
:_;’ = ‘:—: . - given differential equation is exact

Solution of (L is given by:

_[[y (1+;—J+cn5y] de + [Ody=¢C
v constant
=y(xr+logx)+xcosy=C

Example 13 Solve the differential equation:

_ af[xdy— ydzx) Fy
xdx+ ydy = ——_— ikl
) —_ —T
Solution (:c + e dx + iyt dy =0

_:'a.'.j_!? i
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M _ a?(x?-yY) &N _ a® (-
ay = (xZ+y2)2 " f@x ez (2B 4pd)2
aM an

— = — & given differential equation is exact.

ay dx
Solution of (L is given by:
j(:H— dﬂa) dx + [ydy=C

¥ consiant

Z 2
= =+ a@tan 'S+ ==C

L

= x% 4 Eaztan"i-k o TN e

3.5 Equations Reducible to Exact Differential Equations

Sometimes a differential equation of the form M(x, y)dx + N(x,y)dy =0 is

. dM N G ;
not exact 1.e. -5 0. It can be made exact by multiplying the equation by

some function of x and y known as integrating factor (IF).
3.5.1 Integrating Factor (IF) Found By Inspection

Some non-exact differential equations can be grouped or rearranged and solved
directly by integration, after multiplying by an integrating factor (IF) which

can be found just by inspection as shown below:

Term IF Result
L Ty +ydx
Lz L ﬂj,.' e d_:r d[log(xy)]
xdy + ydx Z; m;nﬁ n#l xdy +ydx _ dixy) _ [;]
L LA (=1)(xx)"=21 |
1 ¥id dx
1 2 L [}'I
< o xdy — j"'dr_. i E
2.3 oy ¥
3 :_.}r Id}-'— }Fdl‘ ¥
sl ==l [IGE -
1
4 T
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xdy — yix
= Fe_ i?)
x2 4+ y? X
5 1
xyx = y* xdy — }"dl'_d[&_mﬂ}’]
o = 5t x
1 dx + yd 1
L. &y T X = —dllog(® + y?
Pty X2 + y2 E[Q( ¥y
dx + i 1 2 Ey=n+1
edrtyly | w3 g | BErydr 1+ 5
{x*+ y2)n (x2 4 y2)n 2 -n+1

Example 14 Solve the differential equation:
xdy— ydx +2x3dx =0 ...

Solution: = (—y + 2x¥)dx + xdy =0
M= —y+ 2x% N=x

m_ g N _
Ay ' Bx
aM N

W given differential equation is not exact.

Taking I% as integrating factor due to presence of the term (x dy —
(Il may be rewritten as: M‘t—f‘“ + 2xdx=10

= d[}|+ 2xdx=0....@

Integrating (2}, solution is given by : % Fit=C

S yp+xd = Ox

Example 15 Solve the differential equation:

yvdx — xdy + (1 +x%)dx + x*cosydy =0 .....[1)

Solution: = (v + 1+ x¥dx + (x%cosy —x)dy =10
M=y+1+ x% N= x?cosy —=x

aM AN

= 1, e 2xcosy —1

ydx)
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a * —I - given differential equation is not exact.

Taking M—Eas integrating factor due to presence of the term (v dx — x dy)

(I’ may be rewritten as : m—-%ﬁ+ (%4— l)d.i':.' + cosydy =0
= — dL] +1 d:r+=:na_}rd}f-ﬂ ...... @

Integrating (2}, solution is given by ; — ; ¥ (—i + x) 4+ siny =C
>x2=—y—14xsiny=Cx
Example 16 Solve the differential equation:
rdx+ yvdy = a(x*+y*dy ... (1
Solution: = xdy + (v = a(x® + $2))dy =0
M=x_, N=y—alx*+y*)

o _ B
a8y ' Bx s
% %E , - Biven differential equation is not exact.
X
Taking iy as integrating factor due to presence of the term
(x dx 4+ ydy)

xdx o
(1) may he rewritten as : H_}_r ady=10

& yi
= ~d[log(x* + y*)] - ady =0
= dllog(x* + y*)]-2ady=0......2

Integrating (2), solution is given by: (x* 4+ y%) — 2Zay = €, C is an arbitrary
constant

Example 17 Solve the differential equation:
alxdy+ 2ydx) = xydy .0

Solution: = 2avdx + (ax — xy)dy =0
M= 2ay, N=ax —xy

v 2a, = g
M i
By # — .- given differential equation is not exact.
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Taking :—Fas integrating factor due to presence of the term (x dy 4 y dx)

(2} may be rewritten as : a%yﬁr+ de—d}r =0

= ad[log(xy)] + Eir—d}-=ﬂ.,.,..@

Integrating (3 splution is given by: alog(xy) + alogx —y=C
= alog(x®y) — y =C , Cis an arbitrary constani

Example 18 Solve the differential equation:

N
]

r"%ﬁ-ﬁy + sec(xy) =0 KL
Solution: = (x*y + sec(xy))dx + x*dy =0

M= x*y + sec(xy), N=2x*

aM g aN _ 3

il + x sec(xy) tan{xy), o 4x

3 , : ; oo

a: * — a ». given differential equation is not exact,

Rewriting (D as: x3(xdy + ydx) + sec(xy) dx =10

=k ixdy+ vdx)
seclxy)

= cos(xy) (xdy+ yde) — x ¥dx =0
= d [sin(xy)] - %d{x‘zjdx N @

— ¥ 3d¥ =0

Integrating 2}, we get the required solution as:

—3

sin(xy) —— =C

= 2x :-:m[x}?) =1 =ife*
3.5.2 Integrating Factor (IF) of a Non-Exact Homogeneous Equation

If the equaton Mdx + Ndy = EI 15 a homogeneous equation, then the
integrating factor (1F) will I:u. .pmwdf:d Mx+ Ny =0

Example 19 Solve the differential equation:
(x* + y*)dx — xy*dy =0 ...

Solution: M =x3 + y3 | N = —xy?
am

oM e N 3
ay 3:'; ' ax 4
an . : . "
o o, > - Biven differential equation is not exact.
dy
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l.r' o = 1 ] ]
1 13 = = = —
As '-._:] 154 hﬂﬂlﬂEE“EﬂUE Equatlﬂn, IF Mx+ Ny S o

_ 3 2 .
~» (1) may be rewritten as : (1 + -E;) dx - =dy=0...0
A
hcwM—-+"" New N =— =
L P
dy ek i -
M =2 . @ isan exact differential equation.
dy gx
Solution of @ is given by:

_[(1+ i—:) de + [0dy

-
N constant

= logx — %G)z =0

Example 20 Solve the differential equation:

(3v* + 3x3y3)dx + (Fy — 3ey¥)dy =0 ...
Solution: M = 3y*+ 3x%y?, N= 3y —3xy?

aa:—lz}'+ﬁxy, = 3x%y — 397
a—: %= —I ~» given differential equation is not exact,

As (1) is a homogeneous equation

1 1 1

5 [F = = 5

a4 Ay = Fxyi43xdyi4ndyiagay? i dx 3y

= (1) may be rewritten after multiplying by IF as:

3y? sz [:1 3y

= =] dx e 1 1 R | SR -

4 * dx ® 4y 4x2 4 @

3
NewM=3242 NewnN=2_2
4x? 4y 4x?

o B B . T
ay  4x® 2x3" gx  2xt
aM _ 3N
B ~ (2 is an exact differential equation.

Solution of 2 is given by:
1

4x3
¥ constani
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—
HxE

3 |
+ ;Ingjl:-l—glug}-—'l:
By A -
= logx”y —3 D,D=4C

3.5.3 Integrating Factor of a Non-Exact Differential Equation of the
Form

vl (xyldx + xf.(xy) dy = 0 : If the equation Mdx + Ndy = 0 is of the
given form, then the integrating factor (IF) will be provided Mx —

Ny =0

Example 21 Solve the differential equation:
yvil+axv)ddx+ x(1—xy)dy=0 ...
Solutom: M = y+xy® N =x—xy

Ma—Ny

amM AN
i 1+ 2xy, e 1-—2xy
%‘E‘ w %{“ . given differential equation is not exact.
As (I is of the form yf, (xy)dx + xfo(xy)dy = 0,
1 1 .
= MX-Ny | Iytxiyi-xysxiy? | 2xtyl

~ (1) may be rewritten after multiplying by IF as:

(E;EF"‘E];)JI—F ( : 'l‘)ff}’=ﬂ ...... (2

Zxy*® N iy
1 1 1 1

New M = + = New N=——= —

2xly 2z 7 2xy? 2y
amM -1 aN _ -1
gy 2%y T dx 2%y
ﬂl'll:l' ﬂllil ot . £ 5 [
P = =t () iz an exact differential equation.

X

Solution of &) is given by;

=+ 2) dx + [ - =dy

Zxiy  2x
NVeaonstant
o 1
= —+-logx—-logy=C
2xy 2 & 2 BY

=log>—— =D, D=2C
y x¥
Example 22 Solve the differential equation:
ylaxy + 25y )dxe + x(xy —2'yHdy =0 .....0
Solution: M = xy® +2x%°, N =x%y— x3y*
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aM 2.2 N — Qyp2qyl
M—E:.:y+6ry.a#—2:cj* 3xcy

aM dan : . _

BT e given differential equation is not exact.
As (1) is of the form yf;(xy)dx + xf.(xy)dy = 0,
+ [F = 1 . 1 1

. o M — Ny T pZylaapipion@ylisdy3 0 aplyd

+ (D) may be rewritten after multiplying by IF as:

(ﬂ%‘p_'_ %)dx+ (ﬁ— i)dy=ﬂ.-...-@'

. 1 Z 1 1

NewM =+ - New N=—5— =
x=y X =5 b ¥

M 1 i

dy  xiyt ' ogx xiy2

amM _ aNn : :
o = R (@) is an exact differential equation,

Solution of @ is given by:

j($+§)dx+ J'—i-d}*

¥V constant
-1
=;+2 logx —logy =C
A
=logg———=C
o8 ¥ Xy

3.5.4 Integrating Factor (IF) of a Non-Exact Differential Equation

. .o AM aN ; .
Mdx + Ndx = 0 in which o and o are connected in a specific way as
shown:

M ON

L If @ = f(x) ., a function of x alone, then IF = e/ r{x)dx

i

i If ﬁ;ﬁ = g(¥) , a function of y alone, then IF = o) ~90¥1dy

Example 23 Solve the differential equation:
(x*+3y? +x)de+ xydy=0 ....(1

Solution: M = x*+y* 4+ x, N=xy
. w _
ay Yoax— ¥

Z—f + % . - given differential equation is not exact.
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As (U is neither homogeneous nor of the form yf; (xy)dx + xfo(xy)dy =
o,
AN

Enmputmg—— 2 =&
oM _ N .
:‘i_r [ I .
Clearly =——= el f(x) say

- |F=E‘I'f|:_'x:|dx = E.f%d:; al: Elngx = x

+» (1) may be rewritten after multiplving by IF as:

(x*+xy?* +x%)dx+ x*ydy=0 ... &
New M = x* + xy? 4+ x2 _New N = x%y
EM— E— ¥

E—Ex}r, i 2xy

amM 8

= ﬁ 4 (@) is an exact differential equation.
Solution of @) is given by:

Jix*+xv*+x% )dx + J0dy

¥ CORSiant
g - | 3
=2 L TE L f =¢
5 3

Exﬁmp]e 24 Solve the differential equation:
(v*+2y)dx + (xy®+ 2y* = dx)dy=0 ... D
Selution: M = y"‘ + 2y, N=xy* + 2y*— dx

5” 3 s '3 o

a = = 4y* + 2, v —4

a a

ﬁ .'::: . given differential equation is not exact.

As (U is neither homogeneous nor of the form yf; (xy)dx + xfz(xy)dy =
iy

Eﬂmputlng—“— z—H =3+ 6
|=.|H' am 5
Clearly ‘”’ L :f:: = —;= g(y) say

3
x IF_EI-EU}d}r = Ej_}d}r = E-EJDE}J = —3
¥
(1) may be rewritten after multiplying by IF as:

(5?-!- =) dx+ (x+2y——}d}' 0.2
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New M = v+ f . New N=x+2}'—%

M _ g4 W_ . 4
3}'_ y3'5:¢_ e
dM _ aN

3 = st (@) is an exact differential equation.

Solution of 2] is given by:

2 .

_[(}f+ - ) dx + [2ydy
v constant
2 .

::(y+}§)x + y*=C
Example 25 Solve the differential equation:
(x*—y*+2x)dx— 2ydy =10 ...
Solution: M = x* =y 4+ 2x, N=-2y

aM an

av . Yt ‘
% - ':—“ , = given differential equation is not exact.
X

As (D is neither homogeneous nor of the form

yh(xy)dx +xfalxy)dy =0,

. g W
~ Computing Sl 2y
M_aN
dy dx _ =¥ .
Clearly A e 1= f(x)say

~[F=el My — of1dx — ox
(1) may be rewritten after multiplying by IF as:
e —v2 4+ 2x)dx — 2e*vdy=0...... 2

New M = e*(x* — y* + 2x) ,New N =—2e*y

BN _anwy, N gow

5, = Tlety, o= —2ety

%” = ‘;—H , 2} isan exact differential equation.
o

Solution of (2) 1s given by:
JeX(x® —y* + 2x)dx + [Ody

J-' Comnsfant
= (x* —v*+2x)e* — (2x+2)e* + (2)e* =C
= (x* —y*)e® =, Cisanarbitrary constant



Example 26 Solve the differential equation:
2yvdx + (2xlogx — xy)dy =0 ...
Solution: M = 2y, N =dxlogx — xy

amM d
i =, g 2(14logx) —y
Z—;I =+ ‘;—: , - given differential equation is not exact.

As (1) is neither homogeneous nor of the form vy (xy)dx + xf; (xy)dy =
0

&

: M aN
+ Computing e 2logx+ vy
M aN
By ox _ —ilogxdy 1 _
Clearly == = e T f(x) say
- |F.=E,_I'f(x‘,|dx — EF_TIHJ: — Emgx-.1 _1

x

~ (1) may be rewritten after multiplying by IF as:
%d: + (2 logax— y)dy=0 ....... @

New M = z?J'r._,l‘~1tit1'.=iw N=2logx— ¥

aM _ 2 _ aN _ 2

ay T x  dx =z

aM AN e 1 : :

Tl = # (Z) is an exact differential equation.
'y %

Solution of (2] is given by:
| % dx + [—ydy
yconstand

= 2yl =
yugx—T—C

3.5.4 Integrating Factor (IF) of a Non-Exact Differential Equation
x"yP (myydx + nyxdy) + x“vi(m,ydx + nyxdy) = 0, where a, b, ¢, d,

m,, 1y, M3, Ny are constants, is given by x%yF, where a and B are connected

: a+ w1 b+ g+1 o ol d+ [f+1
by the relation = and =

iy Ty Mz nz

Example 27 Solve the differential equation:
(y*+2x*y)dx + (2x* —xy)dy =0 ...
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Solution: M = y® + 2x%y, N = 2x* — xy
M

N mpd
% = 2y + 2x*, e bxc —y

H S E . = given differential equation is not exact.

Rewriting (1) as x2v"(2ydx + 2xdy) + x%yydx — xdv)=0......2

Comparing with standard forma =2, b=0, ¢ =0, d = 1,

e+ a+l 0+ 0+ o+l 1+ pt1
g e e S

ik

= ao—pf=-2anda+pf= -3

=0 =1

Solving we get o = — and B= =
-5 =1

slF=x"yP =xzy2
s (1) may be rewritten after multiplying by IF as:

Xy 2 (y? + 2x6%y)dx + x5y (2% — xy)dy =0...... D

-------

=5 II}H+EI 2y 2 :de + (Exlyz-x lyz)dy—ﬂ

i =

=0 k] =
NewM=xz2yz+2x:yz , New N=2x:z zj..-a —xzyz

-a|~

gM 82 E e S i B =1 =1
e e i I BV 2 — = =¥ iyt x iy z
2y 2;nr:..-r+:-:3." ' Ax = ¥ xay
L

B B (2) is an exact differential equation.

Solution of (2 is given by:
| (x_jy_f + Ex__;y_;) dx + [0dy

N oonstant
E |

= -ny) 3 - —(‘ AT , C 15 an arbitrary constant

Exercise 3.2

Solve the following differential equations:

1 dv ax+hy+g

dx hx+hy4 f

@

Ans. {ax® 4+ 2hxy + by* + 2gx + 2fy = ()

2. (y*e™ +4x%)dx + (2xye*™” — 3y*)dy =0
Ans. (e +x' —y2 =)

3.20



8.

2 4

vilx — xdy + 3x2y2e* dx = 0

Ans. I[:J:.'+j,.?va'*"‘il = Cy)
v(2xy + e*)dx = e*dy

Ana-{% + x*=0C)
(ylogx )dx+ (x—logy)dy =0

Ans. ((xlogx) H%Ung}f}z = )

(3xy — 2ay®)dx + (x* — 2axy)dy = 0
Ans. (x2(x — ay)y =€)

(Yt 4y 4+ Ddx+ x(x*y:—xy + 1)dy =10
z

Ans, (2x%y® + ::y!ugx? —2=Cxy)
¥y +x)dy+ (x* ¥y =y)dx =0

Ans. (log% + ~x*y* = C)
By +2x)dx— Cxy+x* )y =0

Ans.{x* = Cy(x +y))

10.2x%y —xp2 + ¥)dx+ (x—y)dv =10

Ans. {e* (2xy —y%) =C)
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3.6 Linear Differential Equations of Second and Higher Order

; . X i d?y dn : :
A differential equation of the form F( X, ¥, ﬂ—:: E : ....—"’r)=U in which the
dy  d*
dependent variable y(x) and its derivatives viz, d—]r . d—i ete occur in first

degree and are not multiplied together is called a Linear Differential Equation.
3.7 Linear Differential Equations (LDE) with Constant Coefficients

A general linear differential equation of n™ order with constant coefficients is
given by:

n 1
ko Tt ki T ———— Ky T+ kY = F()
where &'s are constant and F(x) is a function of x alone or constant.
= (ko D"+ kD" '+ ————+k, D+ k, )y = F(x)
= — a -1 = i =8
Or f(D)y = F(x), where D™ = BB Gty s D S - are called

differential operators.

3.8 Solving Linear Differential Equations with Constant Coefficients

Complete solution of equation f(D}y = F(x) is givenby y =CF+P.L

where C.F. denotes comphmentary function and P.1, is particular integral.
When F(x) = 0. then solution of equation f(D)y = 0is givenby y = CF
3.8.1 Rules for Finding Complimentary Function (C.F.)

Consider the equation f(D)y = F(x)
= (ko D"+ by D" 4 — ———+ kyy D+ ky Yy = F(x)

Step 1: Put D = m, auxiliary equation (A.E) is given by f(m) =0
= kom"+ kymt '+ ————+ ko ym+ k, =0...... )

Step 2: Solve the auxiliary equation given by (3]
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[.  If the n roots of A E. are real and distinct say my, m;.... my

CrF. = E[ET“]: + CEE"HET + _”+ E”E!‘.ﬂ-ﬂ_‘r

II. If two or more roots are equal 1e. my=m,=...=mp . k=n
C.F.= (¢ + X + 63%% + - + Gpx* 1 )e™" + - + g e™n*

[II.  If AE hasapair of imaginaryrootsie.my = a+ifm, =a—if

CF.= e™(c, cosfix + ¢ 5in fx) + cze™* + =+ c,e"n*

IV. If 2 pairs of imaginary roots are equal 1e. my =my; = a4+ ifi,

Mmyg=my=u—if

CF.= e"™[(¢ +cx)cospx + (&g + cqx)sinPx] + -+ ce™n*

F
Example 1 Solve the differential equation: i-xi: — Bdﬁr + 15y =0

Solution; = (D* — 8D +15)y =0
Auxiliary equation is: m* —8m+15=0

= (m-3)(m-—-5)=0

= m=35

CF.= e + ¢e™

Since F(x) = 0, solution is given by y = CF

e T e

o dly | dy
Example 2 Solve the differential equation: =5 — 6=-54 117 — 6y = 0

Solution: = (D? — 6D% + 11D —6)y =0

Auxiliary equation is; m* —6m* + 1lm—6=0 ....... @
By hit and trial (m — 2) is a factor of (I

(L) May be rewritten as

m? —2m* —4dm* 4+ Bm+3m—-6=10
=m’m—-2)—4m(m—2)+3(m—2)=0
=(m—4m+3)(m-2)=0

= (m=3)m-1m-2)=0

=m=123
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CF.= ce* + ;0%% 4 cqe¥

Since F(x) = 0, solution is given by y = C.F
=y = ge'+ ge** + e

Example 3 Solve (D* — 10D% 4+ 35D% — 50D + 24)y =0
Solution: Auxiliary equation is:

m* = 10m* + 35m* — 50m+24 =0 ... .0

By hit and tial (m — 1) is a factor of (1)

~(1) May be rewritlen as

m* — m* —9m® + 9m?® + 26m* — 26m—24m+24 =10
=mim=-1)-9Im*(m-1)+26mm-1)—-24(m-=1)=10
= m=1)m* —9m? +26m—-24)=0 ...... (2

By hit and trial (m — 2) is a factor of @)

+~(Z) May be rewritten as

(m=—1)(m*=2m* = 7m* + 14m + 1Zm -24) =0

= m-1[m*m-2)-Tmm-2)+12(m-2)] =0
=(m-1(m —Tm+12)(m-2)=10

= (m—-1m=-3)m-4)m-2)=10

= m=1234

CF.= ce* + c;e* + cze™ +ce®

Since F(x) = 0, solution is given by y = C.F

=y = ge*+ et + e +oe?

. . ; ; . diy diy | dy _
Example 4 Solve the differential equation: et e g

Solution: = (D* + 2D+ D)y =0

Auxiliary equation is; m®* + 2Zm® + m =10
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= m(m*+2m+1)=0
= mim+1)2=0
= m=0-1-1
CF.=¢ + {(c3+c3x)e™
Since F(x) = 0, solution is given by y = C.F
=y = ¢+ (& +cx)e™
dty zd"y

Example 5 Solve the differential equation: —2—2=—5+ y =10

dx*
Solution: = (D' — 20 + 1)y =0
Auxiliary equationis; m* —2m? +1=0
= (m?—1)2 =0
=m+1F(m-1¥=0
=m=-1,-1,1,1
CF.= [o; + c3x)e™* + (c3 + gyx)e*
Since F(x) = 0, solution is given by y = CF

=y = (O +x)e™ + (t3+ox)e”
" v . Ez}" {I}I
Example 6 Solve the differential equation: = EE +4y =0

Solution; = (D —20+4)y =10

Auxiliary equationis: m* —2m+4 =0 ...
By hit and trial {m + 2) is a factor of (T

~(1) May be rewritten as

m? +2mé —2m? — dm+2m+ 4=10
sm’m+2)—2mm+2)+2(m+2)=0

= (m+2)(m? —2m+2) =0

== m==2,1+i



CF.= e~ 4+ p*(c; cosx + c5 sinx)

Since F(x) = 0, solution is given by y = C.F

=y = e ¥+ e%(c; cosx + cysinx)

Example 7 Solve the differential equation: (D* — 2D + 5y =0

Solution: Auxiliary equation is: (m® — 2m + 5)%....... T

Solving (1), we get

= m=1+2i,1+2i

CF.= e*[(c; + cx x)cos2x + (g3 + cyx) sin 2x

Since F(x) = 0, solution is given by y = C.F

=y = e'[(c; +c,x)cos2x + (c; + c,x) sin 2x]

Example 8 Solve the differential equation: (2° + 4)*y =10

Solution: Auxiliary equation is: (m? +4)* ...

Solving (1, we get

= m =421, +2i,+2i

CF.=(c; + Gx + c3x%)cos 2x + (g4 + €5 + Cex?) 5in 2x

Since F(x) = 0, solution 1s given by vy = CF

=¥ = (g +cx +o3x?)cos2x + (cy + cox + cgx?) sin 2x
3.8.2 Shortcut Rules for Finding Particular Integral (P.1.)

Consider the equation (D)y = F(x), F(x) =0
= (ko D™ + llf-j_ﬂ"_1 s o FNIE L R

Then P.1= ﬁ F(x), Clearly P1.=0if F(x) =0

Case I: When Fix) = e%*

] ot R
Use the rule P.1 _f{n}E ;{nje Jla) =0

In case of failure i.e. if fla) =0
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=3 _1 0x — ; ax :
PI= x—e Xoe™, fla)#0

i

If f(@)=0,PL= x2—
Hal=0.0l= o

e® f'(a) # 0 and so on

g

Example 9 Solve the differential equation: =5 — 2% 4 10y = e?*
X

3
Solution; = (D — 2D + 10)y =™
Auxiliary equation is: m? —=2m+10=10

= m=14%3i

CF.= e*(c, cos 3x + ¢, sin 3x)

3 =; =-; M:; Zx i =
Pl. rij[x} ”me rme Chy putting D = 2

1 1
e = —

man. S 2x
29— 2(Z1+10 10

e

Complete solution is: y = CF.+P.l

=y = e*c,co53x +c35in3x) + -:E il
Example 10 Solve the differential equation: E 4 :{* —2y=¢"
Solution: = (D*+ D —2)y = &*
Auxiliary equation is; m* +m—-2=10
=2m+2)m-1)=0
= m=-21
CF.= ¢cie ™+ ;8%
S OO S =
Pl e F(x) r{ﬂ}E putting D=1, f(1)=0
v — ; z am = ; axr e
~P.1 IJ"(IJJE = PLL x}_,m]r} if fla)=20
] r o l 3 F
= P.1 s Tt J(L)y=0
= Pl =X
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Complete solutton 1s: y = C.F.+Pl1

x
s =¥ x 4
- J..’ = E1E 1 1'_‘21? + —3

=
Example 11 Solve the differential equation: iT:: — 4y =sinh(2x + 1) +4¢

Solution: = (D? — 4)y = sinh(2x + 1) +4*
Auxiliary equation is; m? —4 =10

= m =12

C.F.= ¢je®* + c;e72*

e
PI. T F(x)

S S or x
o (sinh(2x + 1) + 4%)

s 1 Eiz:'“":'-r'iz""”}_l_ 1 {Exlugqr]
o — 4 2 D#—4

i [
+ginhx =

x E.—."d

and 4% = g¥log4

2 Da— 4 2 Di-4 ni— 4

=1
A 1 g% £ ! -2z 4 _ 1 Exlngﬂf

Putting D = 2, —Z and log 4 in the three terms respectively
f(2Z)=0and f{=2) =0 for first two terms

[ T, v it BT 1 bog 4
APl =cx—e®—T—x—e ™+ —— pg¥lee
2™ 2p z ~ap (tog413—a

= e A =
'P'I'_I;'[nje if fla)=10

Now putting D = 2, —2 in first two terms respectively

- X
_BX a3y 87X _ae 4 e pXlOg4_gx
=Pl =— P X
i | e + e + T i =4
¥ falderidy g-{zxtl) PE
=P.L=%( ) ——
% 2 (log4)=—4
X e ef4g—x
=PIl ==cosh(Zx+ 1)+ ———— v coshx =
4 ( ) {log4)*-4 2
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Complete solutton 1s: y = C.F.+Pl1

4.!
(log4)2- 4

=2y = e+ e+ fcnsh{zx + 1)+

Case lI: When Fix) = Sin (ax + b)or Cos (ax + b)
If F(x) = Sin (ax + b) or Cos (ax + b), put P* = —a?,
D? = D?D = —a?D,D* = (DY) =a*,......

This will form a linear expression in D in the denominator. Now rationalize the

denominator to substitute D? = —a?. Operate on the numerator term by term
: d

by taking D = o3

X

In case of failure ie.if f(—a®) =0

|

Pl = X b

Sin (ax+ b) or Cos (ax + b). f (—a®) # 0

1

e Sin(ax+ b)or Cos (ax + b), f (—a®) # 0

If f (—a®) =0,P.L= x?

Example 12 Solve the differential equation: (D® 4+ D — 2)y = sinx
Solution: Auxiliary equationis: m*+m—-2=10
=m+2)(im=1)=0

= m=-21

CF.= c;e”® + c,e*

Pl =— Fix) = — _sinx = sin x

il fio) Fimy” oEyp—-2

putting D* = —1% = —1

Lo ¥ i o i
P.I= s Sinx = ——sinx | Rationalizing the denominator

_ (D43} gin x

o =
——— Putting D 1

EP s % (D ginx 4+ 3 sinx)

= 1
R (cosx + 3 sinx)
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Complete solutton 1s: y = C.F.+Pl1

=y = e ¥ +e’ _:_n (cosx + 3 sinx)

Example 13 Solve the differential equation: (D? + 2D + 1)y = cos®x
Solution: Auxiliary equation is: m*+2m+1=10

(m+ 12 =0

=m=-1,-1

C.F. F= E_r{ﬂ'l + I:;l')

I 1 1 1+Cos AT
PL=— FR) = =08k = — ( )
i o Ol+20+1 2

1 1 1
- - —— 0S5 2%
2 pigrn4d 2 DisrDs

Putting 2 = 0 in the 1" term and D? = —22 = —4 in the 2" term

1
Pl= = 4 = cos 2x
T
1 1 2043 - T :
= = 4 = cos 2x, Rationalizing the denominator
2 2 40% =37
1 . 1 (20+3)cos2ry . 5
R, 3 & ELEITIREE. N D2 = -4
: + = ~ ok . Putting

: m ks g g
--]?'.I.-—2 5n{ 4 5in 2x + 3 cos 2x)
Nowy = CF. +Pl

=y = g (o, +c:x) + % - $ (—4 s5in 2x + 3 cos 2x)

Example 14 Solve the differential equation: (D? 4+ 9)y = sin 2x cosx
Solution: Auxiliary equation is: m?* + 9 =0
= = L3

C.F.= ¢;cos3x + ¢, 5in 3x

1
fio)

Pl

F(x) =——sin2rcosx = ~— (sin 3x + sinx)
T

2 0% 40
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1. 4 =3 1 "
=E—51H.5I+ ez sinx

0 +9 2 D*+3

Putting D? = —9 inthe 1" termand D? = —1 in the 2™ term

We see that f(D? = =9 ) = 0 for the 1™ term

APL =2 x—

. 2 i CNEY
. zﬂl51113.7u:+ > 5 sinx

1
fi-

“RPI = x o Sin(ax+b), f(—a?) =0

=PI = —2cos3x + —sinx
12 16
Complete solutionis: y = CF.+P.l
=y = r;C083x +c;sin3x —ﬁcn53x+ ﬁsinx
Case III: When F(x) = x", n is a positive integer
1 1

e — n
Fe i Fx) rfmx

. Take the lowest degree term common from f( D) to get an expression
of the form [1 + ¢(D)] in the denominator and take it to numerator to
become [1 + (D)™

2. Expand [1£ ¢(D)]""! using binomial theorem up to n'" degree as
(n+1)" derivative of x" is zero

: d
3. Operate on the numerator term by term by taking D = —

Following expansions will be useful to expand [1+ ¢(D)] 'in ascending
powers of D

(1+x)'=1-x+x>=x%+-~
(l—x)t=14+x+22+23+ -~
(l+x)?=1-2x+3x*—4x* + -
(1—x)2=1+2x+3x%+4x3 4 -

& & & #»

=
Example 15 Solve the differential equation: jT:: —y=hy—2
Solution: = (D*=1)y=5x—-2

Auxiliary equation is; m* =1=10
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=2 m=Tl

CF.= ge* +oye™*

Pl.= “m F(x) =
5 C* D)
= —(1 - D% 1(5x — 2)
=—[1+D%+-](5x—2)
= —(5x — 2)
~PI=—-5x+12

Complete solution is: y = CF.+P.

=y = eftee ™ —5r4+2

Example 16 Solve the differential equation: (D* + 4D*)y = x? + 1
Solution: Auxiliary equation is: m* +4m® =0

= m2(m2i+4)=0

=m=10,0%2i

CF.= (g +cax) 4 (czco52x 4 ¢, 5in 2x)

Pl —m F{J;'} =

— (x2 + 1)

==

(x* +1)

D*+ 40

= ——— (x% + 1)
4131(:14-“—.}

=—(1 —) (x® +1)

=Lh-Z+u]e2 e
- (1
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-2+
5+ e

Y x)
T P

=+

&~ P zl[ﬂ_’_ﬂ)

4 112 4

Complete solution is; y = CF, +P.l

=y = (c;+Cx)+ (c5cos2x 4 ¢, 85in2x) 4 - (':; + :4:)

Example 17 Solve the differential equation: (D? — 6D + 9y = 1 + x + x°
Solution; Auxiliary equation is: m* = 6m+9 =0

= m-3)2=0

=m=33

C.F.=e*(c; + ;%)

Pl —rm Fix) = = m:IH-[I+:l:+:-~:"}
_ﬁ-{:l-}x*{"l‘z}
W4 %)

e @5 e e

1 +___+E+.,.]{1 +x + x%)

Il

B '

=1 1+-2—ﬂ+-—ﬂ—+~--]{1+x+x2}
9L 3 3
(1+x+x + G sliwm +)
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8 ) (2 T 2

sPI=2(2+4Z 4+ 7

Complete solution is: ¥ = CF.+PlI
=y = (g, +ox) + - [ ol ~+ x )

Case I'V: When F(x) = e™g(x), where g(x) is any function of x

1 .1 ax e R
['se the nlle-ﬁ e _-;;r(:rJ =E (,rrmu;l .!,'.”: })

Example 18 Solve the differential equation: (D? + 2)y = x%e®

Solution: Auxiliary equationis: m*+2=10

== m= iﬂf
C.F.= (c; cos(v2 x) + ¢ sin(v2 x))

1 1
Pl =— Fix) = xie*
)] {] D*42
1
e x2
(D437 42
— R X 2
=
D24a60411
ng 1 x:
2
(Hﬂfﬂ_

=1
3x .ﬂ':
=E—(1+(—+ c ) X
11
p X (r,u ) ( u* ] 2
= — ol x
11

= &b b* . 38DF
_— i § i Rt -.|-1-..I_';|:'2
11 11 11 121
g3x () 25mn*
=—|]l-—+ + o |t
11 11 121
=£( z_ 10 , 50
11 11 121
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“~ P.I = i(IE—E‘F E'.D)

11 11 121

Complete solutionis: ¥y = CF.+PlI

12x 50

3
=y = (¢ cos(vV22)+ o sin(v2 x)) + -f(xz -

11 121
Example 19 Solve the differential equation: (D7 + 1)y = e®™ sinx
Solution: Auxiliary equationis: m*+1=10

=2 mi=-1

x T
CF.=ce* 4+ ez (Ez Cos (‘2—3 x) + ¢4 sin (%x))

BT = — Pl =

eZ¥ gin x
Fim N34

1]

1 ’
g% ————sinx
[(D+21%41

= p2¢ 1 sin x
DisaDis 12040

1 - .
= e ——siny , Putting D* = —1
~D=6+ 120+9

v i
= gl sin x
110+3
2y 11D-3

pg S X, Rationalizing the denominator

Il

QEI Y -
—— (11D — 3)sinx , Putting D* = —1

130

A2P1 = —ﬂfll cosx — 3sinx)
130

Complete solutionis: ¥y = CF.+PlI

=y =58 *+ ez (Ez cos (Z—EI) + c3 sin (?I])

a2 ;
———(11cosx — 3sinx)
130
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2

Example 20 Solve the differential equation: d— — 4y = x sinhx
Solution: = (P* — 4)y = x sinhx

Auxiliary equation is: m?> —4 = ()

= m=+2

CF.= e + c,e™ "

Pl.=
o)
= x sinhx
ffﬂ-{ )
- (IELE_I:] s =g
P-4 2 G ey
TS .
I e 2
o i;x = E'__x;x
T2 (D+1)E-4 2 (D-1}2-4
L E.'I:' 1 E—.t' 1
S [524—:1:-3:.": 2 ul-:n-ax
1 4 g 1 2
= T D2 2
2 -3{1-7-—3-} 2 ~3[1-? -;-}
o p2  apy]~d a=X p? 2py]"d
Rt ) e I
3 3 3 3 3
(al 20
(1 2202
E“'
= (x T ) +— X = -)
&
.. _":'E(irr-i-"'f:] _E(c"?r““)
T AR z g 2
%P1 = =~sinhx —=cosh x
3 g
Complete solution is: y = CF.+PI
Sy = e+ e —isinhx —Emshx
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Example 21 Solve the differential equation: (D? + 1)y = x? sin 2x

Solution: Auxiliary equation is: m* +1=10

=me = -1

==m = +ti

CF.=¢,cosx+ c;sinx

2 ~ e Fix) -
plax
EAZE = ol A z
Now D24 .t‘ € ¢ {.[:+3:‘:|?+|x
— alix k 2
= ¢ X
DE+4i+ 4iD+1
g 1 1 2
D74 4l0—3
i 1
=¥ T
T
—plax p*  4ip
S o]
—gl2x 4iD D 4iD
£ [1+ +L+[3+‘T) x?
—gtx [ p?*  4ip  16i%p?
= 1+—+—+ ]:3
3 9
—aldX 4
e e 130 4!0112
3 L g 3
_at3xT -E|-
- 'E'E ]:'2 _—+ X
=——(cos2x + isin2x) [x* ——+ i—
L 2 + i
: 1 {8 267
~ P.I. = Imaginary part of — e xZe!?t = ;(-_‘—x cos 2x + {x’ —?) 5in Ex)

—%cus 2% + z—l? (26 —9x%) sin 2x
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Complete solutton 1s: y = C.F.+Pl1

=y =c¢ cosx+ ¢sinx — ﬂ?x{:n-s 2x + 2—1:'(26 — 9x%) sin 2x
Example 22 Solve the differential equation: (D? — 4D + 4)y = x*e%* sin 2x
Solution: Auxiliary equation is: m*—4m+4 =10
= (m—2)?
=m=42:2

C.F.= (¢ +c;x)e*”

Pl =— F(x) = ._1 d_xzez"sinzx

xZ sin 2x

(D+22 =D +214+4

I

1
gZx E;xz sin 2x

Il

Zx 15_[ x% sin 2x dx
- (22 - o0 (222 + 0 (2)

1 1 1 g 1
= gk = I—EIE cos2x + ~xsin 2x +E¢:nﬁ:21]

" [—%fxzc952x+ %j_xsinzxtix+l*jcuslxdx]

- e[ (52) - @0 (252) 4 (2529
12rcos2r2—1-sinZri+14sin2e2

Ll =g ["Txlsin 2x — ;—:cns 2x + gsin Exl
Complete solutionis: v = CF. +Pl1
=y = {g; + 0;x)e™™ 4 & [_Trl sin 2x —;—rcns 2x + -Esin Ex}
Case V: When F(x) = x g(x), where g(x) is any function of x

Use the rule: — (x glx))=x

D) il D}g(rjl an ﬁ) g(x)

338



Example 23 Solve the differential equation: (D? +9)y = x cos x

Solution: Auxiliary equation is: m* +9 =0

= m? = —9
=m=+3

C.F.=(c; cos 3x + ¢, sin 3x)

XCDRx . Rimy
= +
7] 1z

s P

Complete solutionis: y = CF.+P.lI

L 008X

=y = cos3x + ¢, sin3x 4+

Putting D? = =1

sinx
32

Example 24 Solve the differential equation:

(D* =1y =xsinx + (1+ x*)e*

Solution: Auxiliary equation is: m® — 1= 0

=2m=+1

C.F.=c,e* +c;e*

Pl =— Fix) =E:Ti (xsinx + (1 4+ x°)e*)

o)
= ——xsinx + — (1 + x2)e*
Di-1 D¥F-1
Now xsinx==x sinx + — sinx
DE_q (| (hZ2—1]2
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= x— sing + ——b
- —-1-1 (—1—1}%

sinzx, Putting D* = -1
= —%[I 5in x + cosx)

1 1

; ' INaX  aX z
Also 52"1{1 +x%)erf = ¢ {p+1_32-.1_|:1 4+ 2%)

e S | 2
S ul+w“+x}
i escay 1 2

e —;:.—EB{H_]]{I+J:}

-1
== (1+7) 1+
20 2
—ax L[1_2 ﬂi] 2
=& 211-1 27T ; (1+x%)
=exi1+x2—x+ll
20 L 2

g . e E]

Do [ B =
TS el L s =]
e lE A g

i : | 2
~'~P_I.=——I—{xsinx+::-:}sx}+E~[L—f~ E]
2 A kT

Complete solutionis: y = CF. +Pl

1 , ¥ [x? xr*  3x
=y =ce*+ce* —E{:-:sm:-:+cﬂsx]+? e

Case VI: When F{x) is any general function of x not covered in shorteut
methods 1 to V above

Resolve f{D) into partial fractions and use the rule:

ﬁ F(x)=e ™ [ e™ F(x) dx

Example 25 Solve the differential equation: (D® + 30 + 2)y = e®”
Solution: Auxiliary equation is: m* +3m +2 =0

=m+1)im+2)=0
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=2m==1-2
CF.=¢e "+ e ™™

Pl =

= —1 g2
i o) D243D+2

= "
(D+1}(D+2)

_( : . B )E,r
T \{p+1)  (B+2)

=e¢~* [e*e*"dx — e [ e™ e dx

=e*[De"dx— e™¥* [e*De® dx

¥
—X L& —2x| %
£

g — g7 e e® — Je"‘e*xdx] , Integrating 2™ term by parts

"

= e ¥e® — e ¥[e*e® — [De* dx]

I

= p~Xpe" . p-ix eanI_ Ee’]

LPL =g tp®
Complete solution is: y = CF.+PlI
=y =6er + c.e” % & grex et
Example 26 Solve the differential equation: (D? + 4)y = tan 2x
Solution: Auxiliary equation is: m*+4 =10
= m = +2i

C.F.=c,cos2x +c;5in2x

PL —HF{x] = dranEx
= _$an?
T [(D=2i){D +2i) KLk
1 1
= E([u-zij m+21} J tan 2x
1
- =3a ¢
P.I 4:( tan 21‘) — tanEx] NN )
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- 1 : : i '
Now —tan Zx = g?* [ e %% tan 2x dx

= ¢2* [(cos2x — i sin Zx) tan 2x dx

3 _ sint2x
e®* [(sin2x —{ =

Ca

; . , 1—cos?2x
= g I(Em 2x —1i dx
COFEX

gt f{sin 2x —isec2x + icos2x ) dx
e = | [ i
= @ —Ecuszx—if:}glse;zx+mn Z2x| +§sin 2x

1 i 1 =2 ] 3
ﬁt;n 2y —plix (_ =@ Y éfuglsecir + tan EIE) ik

Replacing [ by -

o kL — i (_i 2z 4 b ) o
|,:|+2Ft31‘12:t.' e 7 € +2Iﬂg|sec2:r:+tan 2x| ) .. 3

Using @and & in D
_ilegpf 1 gy i
PL=+[e?*(=2e ~log|sec2x + tan 21| )|

. -zaz(_l 2x o 1 ]
ol i ~e +2Eﬂg|sec21+mn21|)

T2 g - [ _o .
e [— e Eemfﬂyls:ﬂ{: 2x + tan 2x| + ';f- — “*log|sec 2x + tan :.‘xl]

1 E..E-Lf+ & =2y

= _I_I—}_nmsec 2x + tan EIl]

T :
~Pl= —i [cos 2x log|sec 2x + tan 2x]]
Complete solutionis: y = CF. +P1L

=y = ¢ €05 2% + ¢ 5in 2x —-::[r:us 2x log|sec2x + tan 2x|]

Exercise 3.3
Solve the following differential equations:

. (PBP4+PE—G8D4+Ny=0 Ans y= (¥ +c)e* + e~
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13

id

iz A0

e 5 +E;|.-r—f..' Ans.y = ¥ + e +e¥(x - 1)

%4.:{— 6y = e* cosh 2x

Ans.;'.-' = g€ —3x 4 CgEH + EEM _1—:..5-—.1.'
(D-1*D*+1)y=e”
Ans. ¥ = (1% + cz)e* + (cax + ¢5) cos x + (csx + ¢g) sinx + ITfEx
(D2 — 6D +9)y = x? + 2e**

2
Ans. ¥ = (cyx + c;)e™* +§(1'E +%:+3) + 2e2*

(D?+D—2)y=x+sinx
Ang w= =2x x 1 N 3 i
s V=8 + e 4{2x+1} — (cosx + 3sinx)

. {DE4+ D)y =({1+e%)?

Ans.y=¢ + e +x—(1+e ™ )log(1+e")

(D? + 5D + 6)y = e secix (1+2tan x)
Ans. ¥y = e 4+ e ¥ 4+ e H(tanx — 1)

d?y rI;-'
e - 12y = (x = 1)e*

rEs 4
Ans. y = ¢ e® + ce” '5’*"+E— I?—%x)

]ﬂd—y—j —+2y= "1’.I+E:'3:gl‘r€]'l}"—1d—}r —1 whenx =10

Tx

Anq.y=—iex—292f+2:r+3+—-z—

3.9 Differential Equations Reducible to Linear Form with Constant

Coeflicients

Some special type of homogenous and non homogeneous linear differential
equations with vanable coefficients after suitable substitutions can be reduced
to linear differential equations with constant coelTicients.

3.9.1 Cauchyv's Linear Differential Equation

The differential equation of the form:

fep X ndy Ky 2™ 1dh_lF+———-+kn_1xj—i+ kyy = F(z)

dx” dx"—1
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is called Cauchy’s linear equation and it can be reduced to linear ditferential
equations with constant coefficients by following substitutions:

¢

x=¢e =logx=t

dy _ dydt _ dyl
dx  dtdx dtx

dy _ 2% _ L
e where D =
Similarly x*—=D(D — 1)y Jr3 g y = D(D — 1)(D — 2)y and so on.

Example 27 Solve the differential equation:

3
f%+ 32 L :'r+x—+8y = 13 cos(logx), x > 0 I
Solution: This 1s a Cauchy’s linear equation with variable coefficients.

Puttingx =e* ~logx=t
=,~x— Dy, x —3',’= D(D— 1)y and x ﬂ—*’ D(D - 1)(D - 2)y
(1) May be rewritten as
(D(D—-1)D-2)+3D(D—-1)+D+8)y=13cost

= (D?*+8)y =13 cost . D E;—E

Auxiliary equation is; m* +8 =10
=(m+2)(m? —-2m+2) =

m=—2,1++3i

C.F.= cie™® +e'(c; cos V3t + ¢ sin+/3t)

= % + :rl:r:g cushﬁlug x)+ c3 siﬂ{ﬁlng x:i

Pl
IL )
- 13— —cost , Putting D? = —1
—D+8
= [H4-I) oy (B40) - -
13=—3cost = 13== Putting D* = -1
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o Prl

r.'ll-*

(Bcost + D cost)
= 1; (Bcost —sint)
—% (B cos(log x) — sin(log x))
Complete solution is: y = CF.+PlI
= = % + x(c; cos(v3logx) + ¢y sin(v3logx) +
% (Bcos(log x) — sin(log x))

Example 28 Solve the differential equation:

a2y dy x3 1
2 + = ]
x S P
dx? dx Y 1+x2

X

Solution: This is a Cauchy’s linear equation with variable coefficients.

Putting x = e® ~logx =t

:?I;"‘—D} x*==DD-1)y

~(1) May be rewritten as

:°|l.'

(DD —1)4D—-1)y=-—

142t

g3t D d
14git ® dl

= (D*-1)y=
Auxiliary equation is: m® -1 =10

= m=1l1

CF.= et + cpet

€1
= —+ (X
p 2

N E!E
P.I _ru: () nz 1 1+edt

- 1 e _1( 1 1 ) 23t
'_n:n—l}n[l:lu] 142t 2 \(D=-1] D41} 14e2t
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_1( A il I s )
T aND-1) 14eH  (D41) 1402
a3t
:i(grj'e—r et = *’_tfﬂr_‘“) = F(x) = e [ ™ F(z) dx
s l C -1 ﬂ,ﬂ-l )
_E(E |+t e At
Put e** = u = 2e*'dt = du
Liae podogns  atp B
*(E ‘r1+udu e Il+udu]

= Etﬂg(1+u}~e‘fj”" = du
(e )

= [: log{l +u) —e” ‘_f(l—— du)

Il

i[erlug{l +u) —e  (u—log(1l +u))

= i(e* log(1 + e®') — e~ (e —log(1 + ')

A - z
4[:.1' log(1 + x*) :{x log(1l + x ])
2l 1 2 X
= ;(x +;)lug£’.l 2 G B
Complete solutionis: y = CF.+PlI
c 1 i x
By = —+ex+ ;(x +;)lug[l 2~
1 L 1 L
== %+ €a% + ;(:r+;) log(1 + x*) ,e3 = &7
Example 29 Solve the differential equation:
x*D*=2xD—4y = x*+2logx, x>0 ...
Solution: This is a Cauchy’s linear equation with variable coefficients.
Putting x = e* =~ logx =1
=xD =8y, x?D? =@ -1y ,6==

(1) May be rewritten as
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(B(6-1)—-25—4)y= e +2¢t
= (6 =38 -4y =e*"+ 2t
Auxiliary equation is: m* —3m -4 =0
=(m+1)(m-4)=0
= m=-14

CF.=c,e”t + c,eM

L W
¥ xt
L = 1 2t
B FUaD £x) 5—25-4 Lol
= 1 2t 1
e 2 52 =38-4 at

= ‘_ngzt F 2~4{—1!gg—5=£ Putting § = 2 in the 1™ term
- e B

1 3-1]
-2-4(1-G-%)

]

-2 -4

R
Complete solutionis: y = CF. +Pl1
L

3.9.2 Legendre’s Linear Differential Equation
The ditferential equation of the form:  ky(ax + b)" ::—: +

d"y
15 called Legendre’s linear equation and it can be reduced to linear differential
equations with constant coefficients by following substitutions:

k, (ax + b)"*

d
+ o+ Ky (ax + b}d_i_l_ kny = F(x)
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(ax+ b) = €' =t =loglax +b)

dy _dydt _dy a
dax df dx dt ax+b
dy

::a(ﬂ_it"l"f]}:—::ﬂdr—ﬂﬂ}’ where D = —

2
Similarly(ax + b)* £ = a*D(D — 1)y
(ax + b}E:ET]: = a*D(D — 1)(D — 2)y and so on.
Example 30 Solve the differential equation:

(Bx+ 222 Y 4 303 + DL-36y =3x*+4x+1 ...
Solution: This 1s a Legendre’s linear equation with variable coefficients.
Putting (3x + 2) = e o« t=log(3x +2)
= (3x + E]— = 3Dy, (3x + 2}3 =3’D(D— 1)y
Also3x? +4x +1= -;-[-af +12x + 3)

=-((3x)° + 232x +4—4+3)
= 2((3x+2)*-1)
_ 1. 3
= 3(& 1)
~(L) May be rewrilten as
(9D(D—1)+9D—36)y = ( 1)
= 9(D? —4)y =5 (e* — 1)
Auxiliary equation is: 9(m?* —4) =0
=m=F2
C.F.= 1 E_Er + flﬂ'zt
v 2
2t e (3x+2)
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I = — i S8 et —
i fie) F(x) = -aw* 4} 3{
TR (L | u-:)
27 ({DE—-HE [ﬂzmﬂg
o LR E e Et) .
s [Ht’ tﬂ- 4}E Putting D = 2 in 1 tenm, it is a
case of failure +» ——e2¢ = t——e®* also D = 0 in the 2™ term.
(D==4} f2)

-2 e+ )
LoD a2 )

=—[(3x + 2)%log(3x + 2) + 1]

Complete solution is: y = CF. +PI

sy=—S @+ 2+ —[(Bx+2) log(3x +2) + 1]

Example 31 Solve the differential equation:
(x +1}3—+[ +1) jlf+;,-r—25E11(||:|ng[:.v|:+1]} o ) WP, @

Solution: This is a Legendre’s linear equation with variable coefficients
Putting (x + 1) =e' ~t=1log(x + 1)
=+ D2 =py (x+ 122 = 2p- 1)y
dx dx
~(1) May be rewritten as
(D(D—-1)+D+ 1)y = Zsint
= (D*+ 1)y = 2sint
Auxiliary equation is: (m*+1) =10
= m = *i
CF.= c;cost + casint

= ¢; cos(log(x + 1)) + c; sin(log(x + 1))
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=1

+ ¢, (3x + 2)*

C (ax+z)?
& . 1 o
Pl = = Fix) = o 2sint
=2t$ sin t, Putting D?* = —1, case of failure

. e
sint =t——sint
(D2+1) fim

=t [sintdt = —tcost
~PI= —log(x + 1) cos (log(x + 1))
Complete solution is: ¥y = CF. +P.
y = ¢; cos(log(x + 1)) + ¢; sin(log(x + 1)) — log(x + 1) cos (log(x + 1))
3.10 Method of Variation of Parameters for Finding Particular Integral

Method of Variation of Parameters enables us to find the solution of 2™ and
higher order differential equations with constant coefficients as well as variable

coefficients.

Working rule

Consider a 2™ order linear differential equation:

4y ;. pd¥ - -
P+ Qy =F(x) Y
1. Find complimentary function given as: C.F. = ¢; ¥ + 6%,
where ¥, and y, are two linearly independent solutions of (1)

¥ ¥
2. Calculate W = | 1, 2,
M1 M2

. W is called Wronskian of y,; andy,

3. Compute w, = —_f%mdr, Uy = j""'ﬁ;ﬁdx

4. Find P.1. = uy v, + usy.
3. Complete solution is given by: ¥y = CF. + Pl

Note: Method is commonly used to solve 2™ order differential but it can be
extended to solve differential equations of higher orders.

; , L
Example 32 Solve the differential equation: ﬁ + ¥y = cosecx
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using method of variation of parameters.

Solution: = (D? + 1)y = cosecx
Auxiliary equation is; (m* +1) =10
= m = Fi

CF.= qcosx+casinx =cyy; + C3¥s
sy =cosx and vy, = sinx

o e L s L

iy = —f%dl‘= — [sinx cosecx dx = — [ 1dx = —x

F ’
By = j'y‘dex = [cosx cosecx dx = [ cotxdx = log|sin x|

S PI=wy; + upy;
=—xcosx + sinx log|sin x|
Complete solution is: y = CF. +P.

= ¥ =g, 08X + C;Sinx — xcosx + sinx log|sin x|

Example 33 Solve the differential equation: (D* — 2D + 1)y = ¥

using method of variation of parameters.
Solution; Auxiliary eguation is: (m®* —2m+1)=10
= m=1,1

CF.= (g+x)le*=qe*+oxe* =gy +oa)y
syy=e*andy, =xe’*

x

W=|;:J. ;;{I:lex

&

xe*

X x=EEI
xe+ e

dx = — [ xdx = —2—2

= _I;erF{x:ldI s _Ixe

Xk
W g

¥

u;z:j_%mdx:fex;x dx= |lde=x
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~Pl=ugyy + uzy;
£ 2
___,I?Ex + xle¥ =12 i
Complete solution1s: y = C.F. +P.

z
=y = (g +cyx)e’ +%E‘I

Example 34 Solve the differential equation: :T!’: + 4y = xsinZx

using method of variation of parameters.

Solution: = (D? + 4)y = xsin 2x
Auxiliary equation is: (m* +4) =0

= m = +2i

C.F.= cycos2x + ¢ 5in 2x = ¢y + ¥y

sy = cosZ2x and ¥y, = sin 2x

i Mz | = | cos £x sin 2x

wzll"tf ¥z 'l 7 1=2sin2x 2cos2xl ~

= _J‘E{éﬂdx = —%f:'t.’sinE 2x dx = —ifx[l — cos4x) dx

=il - o (=)

_[_x* |, xsindx  cosdx
_! T 1w T e
ity = j’“f:x]d == [xsin2xcos2x dx = - [ xsin4x dx

[[ } Eﬂﬂ"‘:.ﬁ!) {1] EIII'I-I-I) ]

X cosdx . sindx
- [
16 B

~Pl=wuy +upy,;

x& x sin 4: Cos 4
=cos x| ——+
i 16

] + sin 2x

X DOs54r sindx
_ R
16 fih

3.52



. - . e 1 " i ’ '
= i (sin 4x cos 2x — cos 4x sin 2x) + —(cos 4x cos 2x + sin 4x sin 2x)

.1'1 R 3 5 1 .‘-l.'i
—=—pros 2y =—sin2y + —c0s 2x — —cos 2x
8 16 64 B

Complete solution is: ¥y = C.F, + Pl

. r . 1 x2
= y=c;co082x +cysin2x + Esmix +;cn52x—?m52x

Example 35 Solve the differential equation: (D? = D = 2}y = g(#"+3%)
using method of variation of parameters.

Solution: Auxiliary equation is: (m*—m—-2)=10

= m=—1,2

CF.= ¢ie™ + ¢ e®™® = ¢y + 25

ayp=eFand y, = e
- [}’1
STk f

Y

u, = _Il’z:fx:l e J- E[" ) i _JEHE"‘TEW di

e Zev

2x

—¥
e e [ i 3‘_:.._:.'
—e™* 2ef

= _;f_[e“*"e”‘dx, Putting e* = t = e¥dx = tdt

wy = — [ etdt = —Z[(t*)(e") — (3t?)(e") + (6£)(e") — (6)(e")]

i
= U, =-ET[EH=-SEM + 6e* — 6]

_ rWF(x) = o~ *p(e 3] _ pe e i .1:' - e
we = [EGR = [ dx= 5 dr et =5
s Pl= Uiy + Uz Vo

ex —x wX L 2x
. g &
== [ = B R B

o
= T[3e"‘ — 6+ be ]

Complete solution is: y = C.F.+P.I
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|
=y =ce "+, e + 53—[39"' — b + e ¥

Example 36 Given that - v, = x and y, = iare two linearly independent

; : : ; z d
solutions of the differential equation: x* E + xd—i -y =x,x#0

Find the particular integral and general solution using method of variation of
parameters,

o - L@y 1dy 1 i
Solution: Rewriting the equation as; —— + ——— —y = -
Giventhat ~ y; = xand y, = i
SCF =gyt =0+ F;i

1
B 1 T ; i B
W_IJH' By 1T o
x2
— yzFix) — i X = TR = =
w=—[="dr=[-.code=-]-dx=-logx
_L-?

Uy = f%mdx = -f:r:.;.

|
[
=
e
I
|

~PI=wy + upy;
=I) ]
SETRE g

Complete solution is: y = C.F.+P.lI
= Sy & &=

=S Y =ix+ % +]|{1th' 2

g &%y

Ty g0 -
o 4xdx+6}r—xlugx

Example 37 Solve the differential equation: x
using method of variation of parameters.
Solution: This 1s a Cauchy’s linear equation with variable coefficients.
Putting x = e* slogx =t

dy _ 2%y _ %
B x—=Dy.x de—D(D 1)y
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 Given differential equation may be rewritlen as
(DD —1) — 4D + &)y = te™
= (D* — 5D + 6)y = te®
Auxiliary equation is: (m = 2)(m=3)=0
= m=23

CI" = iH EEI + EEEEI = {:-LJIJH —+ {.'2]-"2

noYy = E.Et El'll’l_}?z = EE”
Yi ¥z g3t mp
W = =g
oy | 2o Hﬁjtl
nF{t} 9“ T
u, =—| :ir_—j .:f._—j'tdt E
aBEpa2e

= B e =

L

= [te~*dt = [(t)(—e™*) - (1)(e™*)]

=[

= —fe =

o Pl: vy + Unla

2 - s
=i — P (™ g P

2

-]
,_._f?ezc_wzr_gzz =_Eﬂt{%+ t+1)

Complete solutionis: y = C.F. + P
=% = ;0% + gzt — p (§+ t+ 1)

(E!ng x)E

ory = g x’ +c¢; x% — +Iﬂgx+1)

z
Sy =X+ xS —""?{Iu::rg:-:'jllz - x2logx, cs =3 —1

311 Solving Simultaneous Linear Differential Equations

Linear differential equations having two or more dependent variables with
single independent variable are called simultaneous differential equations and
can be of two types:



Type 13 f1(D)x + f>(D)y = F(t) , g1(D)x + g(D)y = G(t), D ==

Consider a system of ordinary differential equations in two dependent variables
x and y and an independent variable £:

f(D)x + £ (D)y = F(t) . g:(D)x + g(D)y = G(£), D ==

Griven system can be solved as follows:

L.

2,

&

4,

Eliminate y from the given system of equations resulting a differential
equation exclusively in x,

Solve the differential equation in ¥ by usual methods to obtain x as a
function of ¢ .

Substitute value of x and its derivatives in one of the simultaneous
equations to get an equation in ¥,

Solve for v by usual methods to obtain 1ts value 4s a function of t.

¢ dy i

Example 38 Solve the system of equations; i—':+ y=e, =—x =g

dt

Solution: Rewriting given system of differential equations as:

(1)

Dx+y=e'_ . (0
Dy—x=e™" ....2), E%
Multiplying (1! by D
=D2x+Dy=¢t...@
Subtracting (2 from (&), we get
D+ 1x=et—e. ... 0

which 1s a linear differential equation in x with constant coefficients.

To solve @} for x, Auxiliary equation ism®> +1=0

=m = +i

CF.= ¢ccost+cps5int

Pl =—— F(t) =

1

1 1
t —tY — t —t

et —eg = e e
FlLD D241 ( )

DE 41 DZ 41

=%e‘ - %E_t, Putting D = 1 and D = —1 in 1™ and 2™ terms respectively

; 1 O
SnX=ccost+ oy 51nt+;e‘ 2 Ly
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Using Ghin (D= D [J:, cost + c;sint +§Et - %e“ Fy=gt
=5 [—c, gint + ¢, COS t +-i-_|--re't + ée‘f] +y=et

. 1 L
#}-zcismt:-czcust+get-ier ...... (&)

(5 and (B give the required solution.
Example 39 Solve the system of equations: t = + y =0, —4+x

given that x(1) =1, y(—1) =10
Solution: Given system of equations is:
tZ+y=0...0
t% +x=0....02,
Multiplying (D) by ¢ -
bt +y) =0

=

2
rE:t,+r—+r"—J’=ﬂ ...... 3

.‘:.ubtramm}, @ from ), we get
adx . dx :
t Eirz+at r=0.._0@&
which is Cauchy’s linear differential equation in x with variable coefficients.

Puttingt =e* «logt=k

dx _ zd%x _ _ =
::td:—ﬂx,r m&_mn I}I,D_'H

& (4) may be rewritten as

((D-1)+D-1)x=0 ...... 5}

=D =1)x=0

To solve (3} for x, Auxiliary equationism® —1=0
=m=*l

CF.=qe*+ce = ct+2
E
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.'.x=r:r,t+% ....... (B}

; v e d 2
Using (Giin (1) = t—(ﬂ1f+ﬂ—)+}’ =0
L s i
=% clt—?+_}r =0
=y= -r:lt+?.......-{'ﬁ

Also giventhatat t=1,x=1andat t=—-1,vy=0

i /5 1
Usingin@and @ ¢y +6,=1, gy~ =0 = ¢ i S

Using ¢; = ¢; =§ n (Gland 7, we get

e=3(t+2), y=3(-0)

Example 40 Solve the system of equations;

dix - diy .
G TY =sini, = +x = cost

Solution: Kewriting given system of differential equations as:

D¥*x +y=sint.....D
D¥y+x=cost .2, D =4

dt
Multiplying (1) by D?

DZ(D%x + y) = D%sint

= D%+ Dy = —sint ....G=
Subtracting (2! from (), we get

(D* = 1)x = =sint —cost ...

which is a linear differential equation in x with constant coefficients.
To solve (@} for x, Auxiliary equationism? —1=10

= (m-1Dm:+ D=0

== im=31,xi

CF =ce" + et +(cycost + cysint)

|
rip;

1 :
——(—sint—cost) = ——— 3

PL= Fi(t) =
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Putting D? = =1 ie. 0* = 1 in 1" and 2™ terms. it is a case of failure
2 PL=—t—ssint— t—cost
- PL.=—t_—sin 53 €05
¢f £ 1 : 5
=-—sint + ~—cost Dé=-1
A + o putting
! e
= =—=g05f+ =510t
4+ 4
3 : B s -
ax = (et + et +(cycost + ¢, sint) + (sint — cost). ... .. ()
Using &in (1)

= p? I.n:ie* +c;e”t + (c3cost + ¢y sint) +£ (sint —cost)|+ y =sint

t 1
=D [cle‘ — et —gysint + ¢, cost +E[cust+ sint) +E(5in t —EDE!‘.}]

+y=zsint

¢ 1
=5 [c‘ie* 4+ ;e " — 3005t —Cy5int +:i-|{—slnr, + Co5 t}+;(cnsr +sint)

1
+E(cnﬁt+aint}]+}r = sint

=y =—(c,e' + e )+ (cycost + o, sint) + G + é) (sint —cost) .6

(5 and (@ give the required solution.

, G A . de _ dy _ ds
Type II: Symmetric simultaneous equations of the form f = Ey =
. : . A dx _ d i
Simultaneous differential equations in the form Fx = Fy = Fz can be solved

by the method of grouping or the method of multipliers or both to get two
independent solutions: w=c¢,,v=c¢,; where ¢; and ¢, are arbitrary
constants.

Method of grouping: In this method, we consider a pair of fractions at a time

which can be solved for an independent solution.

Method of multipliers; In this method, we multiply each fraction by suitable

multipliers (not necessarily constants) such that denominator becomes zero.
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. T iy dy dw adz+hdy+eddsz
If a, b, care multipliers, then —= — = — = ——
: P : F q R aP+bhg+ch

Example 41 Solve the set of simulianeous equations:

ax dy iz

— e

(z2-2yz-y?)  (xy+ax)  (xy—ax)

Taking x, v, 2 as multiphiers, each fraction equals

xdx+ydy+adz _ Xxdx+ydy+edz
(xz?—Zyper—xy? 4+ xyidayr+ayr—xzt) 0

= xdy + pdy + zdz = )

. Iz _'!-r? I: .
Integrating, we get = + & + = = ¢,

1" independent solution is: u = ¥24+y2 4+ 22 =¢,.....01

Now for 2™ independent solution, taking last two members of the set of

d iz
z(y+z)  x2(y—£)

equations:
=(y—-2)dy=(y+2zldz

= ydy — (zdy + ydz) — zdz = 0
= ydy —d(yz) — 2dz=0

Integrating, we get

z i

¥ =

s TS TE

— vz}rz_z};g_zz:fz __________ @.}

(1) and @ give the required solution,

Exercise 1.4

Q1. Solve the following differential equations:
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d_v
II

= :‘rx—+-'-}y-{1+x)2

-
Ans, {y = (¢, + ¢; log x)x® +—E+ 2% +I?{|Dgxl'l2}
. z 4% dy -
n x n,x=+4xdx+2}r—e

c e gt
Aﬂs_{}r=;l+1—i+x—z}

i, (2x+3) - 2x+ 32— 12y = 6x

34457 57
Ans {y =, (2x + 3} +EE[21‘+3}

3 3
-=2x+3)+2)

iv. (xr+ 1“_]2 — -I- (x + 1} ~+y=4 cos(log(x + 1))
Ans{y = 4:1 cus(lug[::: + 1}} + c; sin(log(x + 1)) + 2log(x +
1.siogy+1

(2. Solve the following differential equations using method of variation of
parameters

. d*y
. el o xsinx
Ans. {y =c¢,cosx 4+ ¢;5ihx + ! cosx +£sinx—fcnsx}
8 4 4
1L (D* —1)y = e **sine™™
Ans. (y = et + e —sine™" —e* cose™)

i, (D —2D)y = e¢*sinx
Ans. {y = ¢y + cze“* — %exsin x)

: dey "
' — e = ¥
1y, e E =eg" logx

;'ms: {y =c¢y + 6% + i—zef(z logx = 3))

2. Solve the following set of simultancous differential equations

? dx = d_].-'_ N =
1 d——'?x+}-f 0, o 2x —5y =10

Ans:{x = e®(c, cost + ¢, sint),y = e%(c, — ;) cost + (g, + ¢, )sint) )

il D+Dx+@D+1Dy=e' . (D-1)x+(D+1)y=1
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Ans{x = cie' + e + 27ty = 3get + 20,07 + 3e7Y)

iax . dy dz
[2E=2pr—yE) (xyw+zx) (xy—21]

.

Ans{xy —z=c¢, x*— ¥y +z2' =¢;)
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Chapter 4

4.1Introduction Partial Differential Equations

A differential equation which involves partial derivatives is called partial differential equation
(PDE). The order of a PDE is the order of highest partial derivative in the equation and the
degree of PDE is the degree of highest order partia derivative occurring in the equation. Thus

32z \* az\* a
order and degree of the PDE ( z) + (—z) - :Jr:i:{]arer&epectivelyZand 3.

x dy g

If ‘z’ is a function of two independent variables ‘x’ and ‘y’, let us use the following notations for

the partial derivatives of ‘z’ :

dz dz 9%z %z 9%z

E:p, a}::q’

4.2 Linear Partia Differential Equations of 1% Order
If in a 1% order PDE, both ¥’ and ‘g occur in 1% degree only and are not multiplied together,

=5 S
dx dy dye

=t

then it iscalled alinear PDE of 1% order, i.e. an equation of theform Pp + Qg = R; P,Q,.R ae
functionsof x,y,z,isalinear PDE of 1% order.

Lagrange’s Method to Solve aLinear PDE of 1% Order (Working Rule) :

- . dx dy dz
4.2.1 Form the auxiliary equatlons? = o =%

4.2.2 Solve the auxiliary equations by the method of grouping or the method of multipliers* or
both to get two independent solutions; @ = @,V = b ; wherea and b are arbitrary
constants.

423 @ (u,v) = 0 or u= f(v) isthegeneral solution of the equation Pp + Qg = R.

*Method of multipliers: Consider a
1 2 3

fraction — = — = —
2 4 6

Taking 1,2, 3 as multipliers, each

£ ) _ 1><1= 2><2= 3x3
raction= 523 = 323~ &x3
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Example 1. Solvethe PDE(z? — 2yz — y%)p + (xy + zx)q = xy — zx
Solution: Comparing with general form P = (z% — 2yz — y*),Q = (xv + zx),

R = (xy— zx)
Step 1.
Auxiliar ations are =¥ __ _&
u y equ (22 —2yz—y2) o (xy +zx) o {xy—zx)
Step 2.
xdx +ydy +zdz

S - o
Taking x, v,z asmultipliers, each fraction (x2% —2xyz—xy® + %y +ayz +2yz—xz?)

_ xdx+ydy+zds
0
= xdx +ydy+zdz =0
Integrating, we get
LY LR,
2 2 2 7
su=x*+y*+z' =a @)

Thisis 1% independent solution.

Now for 2" independent solution, taking last two members of auxiliary equations:
dy dz

x(y+z) - x(y — z)

= (y—z)dy = (y+2)dz

= }rd}! — (Ed}’ +_}de] —zdz =10
= ydy—d(yz)— zdz= 0
Integrating, we get

JJ.E ZE

7 YTy Th

= v= y*—2yz—z>=bh @

Which is 2" independent solution
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From ) and (2), general solution is:
@ (x*P+yi+z%, yP—2yz—z")=0
4.3 Homogenous Linear Equations with Constant Coefficients

An eguation of the form

a "z
kuaﬂ+ ki smggyt————than=F@y) — O

where k's are constant is called a homogeneous linear PDE of n" order with constant

coefficients. It is homogeneous because al the terms contain derivatives of the same order.
(3 may bewrittenas:

(ke D"+ kD" D'+ ————+k, D™z=F(x,y)

or f(D,D")yz=F(x,¥) ,where:—x =D and% =D’

4.3.1 Solving Homogenous Linear Equationswith Constant Coefficients
Casel: When F(x,v) =0

7 7 2
i.e. equation is of the form k,;. P Z + ko 523y = 4 ko a;_-; S —— @
or koD*+ kDD + k,D? =0
Inthiscase Z= C.F.
Case2: When F(x,y) =0
a%z a%z 2z
i.e. equationis of theform  Kq a2 + Kk oxdy + k, 32 = F(x,y) - G

or keD*+ ky DD + k,D? = F(x,7)
Inthiscase Z=C.F.+P.l.

Where C.F. denotes complimentary function and P.I. denotes Particular Integral.
Rulesfor finding C.F. (Complimentary Function)

Stepl: PuuD=m and D'=1 in@or (5asthe case may

beThen A.E. (Auxiliary Equation) is: ko, m?> + k,m+ k, =0
Step 2: Solvethe A.E. (Auxiliary Equation):
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i If theroots of A.E. arereal and different say m, and m,, then

CF.=fily + myx) + f(v+ myx)
ii. If therootsof A.E. areequal say m, then
CF.=fily + mx)+ x fo(v+ mx)

2 2 2
Example 1.2 Solve g—;}— 492 _59z_

Solution:= (D?*— 4DD —5D%)z=0
Auxiliary equationism? —4m—5 = 0
= (m-5)(m+1)=0

= m=>5,-1
CF.=fily + 5x) + fi(y —x)
=Z=fily+ 52)+ fo(y—x)
9%z 9%z 9%z

Example1.3 Solve 2 =
xamp v dx? + dxdy + ay?

Solution:= (D*+2DD +D?%)z=0
Auxiliary equationism?® + 2m+1 =0
= (m+1)?=0

= m=-1,—-1
CR=fiy—x)+ xfa(y—x)

=2=,(y —0) + 1, = %)
Rulesfor finding P.I. (Particular Integral)
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* Applicableonly if F(x,y) =0
Let thegiven PDE bef ( D,D") z=F(x,y)

F(x,y)
f(D,D")

P.I =

Casel : When F(x,y) = e®+by

Put D=a and D' =b

ax+by
If ,b) #0,P.I=
f(a,b) Cab)
xeax+b}r
andif f(a,b) = 0,P.I= ,
25/ (P.D)

NowputD=a andD' = b

2 2 2
dz iz 87z _ ox+tvy
Example 1.4 Solve—— 5 axay T 6 557 e

Solution:= (D*— 5DD +6D %)z = e**¥
Auxiliary equationis: m* —bm+6 =10
= (m—-2)(m—-3)=0

=m=23
CFR=f(+ 2x)+ fi(yv+ 3x)

Ex+}r

D2—spp'+eD'2

P.I=



PtD=1D"=1

X+y A+Y

a e

1-5+6 2

gty
=z=filyv+ 2x)+ fz(_y+3x]+T

Example 1.5 Solve r — 4s + 4t = @2% 1Y

2 2 2
. d°z iz 3z _ L2x+vy
=>—— 4 + 4 _—=ge=*")
Solution 32 Xy P

=(D?— 4DD’' + 4D'?)z = e?* 1Y
Auxiliary equationis; m? —4m+4 = 0
= (m—-2)2=0

=m=272

CER=f(y+ 22)+ xfo(v +2x)

e 2XTY

Pl=_¢ ~
(D—2D"*

PuttingD =2 D'=1 , denominator =0

x92x+y xezx+y

Pl=a_——"—"F5 = ——
50—2D")? 2(D—-2D")

Putting D=2 ’,DI =1 , again denominator = 0

xZg2Xty
Pl.= d

il _ r
—52(D—2D")
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B 2 g 2XEY
=>PIl. =

Complete solutionisZ=C.F. + P.I.

22X+

2

=>Z=filyv+ 2x)+ xfily+2x) +

Case Il :When F(x,y) = e (x,y), @(x, ) isatrigonometric function of sine or
cosine.

1

P| = ™ tby
f(D+a, D'+b)

d(x,y)

Example 1.6 Solve (D*+ D?D' —DD'?— D'*)z = e* sin 2y
Solution: Auxiliary equationis: m? +m? —m—1=0

=m=1,-1,—1
CR=fy+x)+ fL(yv—x)+xfi(y—x)

e* sin 2y

D3+ p2p'—pp2_p°

P.I =

e’ sin 2y e” sin 2y

~ p2(p+p')-0"*(D+D") - (p+0")’ (p-D")

—e*——sin2y (~ra=1,b=0)

fio+1, D" )

=e* = sin 2y
(D+1+0')2(D+1-D")

1
(D24+1+D'2+2Dp4+2D"+2D0D" Y (D+1-D")

—

sin 2y



Pt D2=0,DD'=0,D%= —4

Pl =e* L sin2y

(0+1—44+2D+2D0"+0)(D+1-D")

1 )
—e sin 2
(-342D+2D")Y(D+1-D") Y

1
(—3D+2D242DD" —34+2D+2D"+3Dp'—2DD"—2D"'2)

—

sin 2y

1
(-D+0+0-3+5D"—04+8)

—_ X

sin 2y

—_— =
"~ (sD'-D)+5 sin 2y

_ 5 (sD'-D)-s
"~ (sDp'-D)2-325

sin 2y

» (5D'-D-5)sin2y
25D'24+p2_10DD"-25

» (10cos2y—0-5sin2y)
25(—4)+0+0-25

e* :
= (10cos 2y — 5sin 2y)

e
=% (sin2y — 2 cos 2vy)

=Z2=fily+x)+ iy —x) +xﬁ(}r—x]+%[sin 2y— 2cos2y)

Caselll : When F(x,y) = Sin (ax + by) O Cos (ax+ by)
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Sinlax+by) or Cos (ax+by)

PI= f(D2,DD'.D'2)

Put D= —a? D'= —ab,D?= —b?

H P Sinlax+bvlorCos (ax+byv)
ence .l =

fi{—a®,—ab,—b?)

2 2

dcz d<z
Example 1.7 Sol —
P Veﬂxz dxdy

= Sinx Cos2y

Solution:= (D*— DD)z = Sinx Cos2y
Auxiliary equationism? —m = 0
= mm—-—1)=0

= m=20,1
CFR=fA)+ fL(ly+x)

Sinx Cos2y
p2-pp' ~ p2- DD’

2[Sin (x + 2y) + Sin(x — 2y)]

1.
oo DD, Sin(x + 2y) + 2

DZ DD.I’ Sln(x T 2}')

PuttingD? = —1, DD’ = -2 inthe1® term, D? = —1, DD’ = 2 inthe 2" term

_15in (x+2v) N 15in (x—2v)
T2 —1-(-2) 2 -1-(2)

1 1
=P.lL= 3 Sin(x + 2y) —ESin (x —2y)

Complete solutionisZ= C.F +P.1

= Z= )+ £y +x) +5 Sin(x+2y)— £ Sin (x— 2y)
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CaselV : When F(x,y) = x™y™"

xm},n

f(D.D")

Pl =

- [f( D,DIJ]_l.xm_}’ﬂ

Expand [f( D, D")] in ascending powersof D or D' and operate on x™y™ term by term.

2

2 2
gz+ 7z _6%i=x+y

Example 1.8 Solve 55+ 7,55 2

Solution: , ,
= (D*+ DD —6D%)z=x+y

Auxiliary equationism? +m—6 = 0
= m+3)(m—2)=0

= m=-—3,2
CF.=fily —3x)+ f(y+2x)

_ x+y
" D2+ DD'—6D"

P.I

STNCRYE o
:é[l—%{- ————— }(X‘F}')

w(l+t)y t=1—t+tP -t — ——
= 5|y - 20+ D)
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1
=zlx +y -l

_ 1oy
Pl =5[] =2

Complete solutionisZ= C.F +P.|
12
= Z=fily=30)+ flv+20) +55-

Example 1.9 Solve (D* — 3 D?D")z = x?y
Solution: Auxiliary equationis: m* —3 m? =0
=m*(m—3)=0

= m=10,0,3

CF.=filyv)+ xf(y)+ fi(y +3x)

pl= XY
© 7 p3_3p2p

ra—1

1= 2] o

IES PR P
a [1+D](xy)
@At =1 4ttt - — —

=2 + 2 )

1
= 5%y +x°]
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1 23y xq‘]
D%l 3 4

1 [xty xE'}

DL12 20
2 G
x-y x
= P.I. :[— + —]
&0 120

Complete solution isZ= C.F +P.I
— xS}-‘ %0
= Z=fi(y)+ xf2(y) + fo(y +3x) + [ﬁ +m]

Case V: In case of any function of F(x,y) or when solution fails for any case by above given

methods

F(x,y)

P.I= (00"

1
R&eolvemi nto partia fractions considering f( D, D") asfunction of D alone.

_ Flxy) _ _
PI= ———== [ F(x,c — mx)dx

where C isreplaced by ¥ + mx after integration.

Example 1.10 Solve(D* — DD’ —2D"*)z = (y — 1)e*
Solution: Auxiliary equationism? —m — 2 = 0

= (m—-2)(m+1)=0

=m=2—-1
CF=filyv+2x)+ fi(y—x)
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Pl = (y—1)e* (y—1)e* _ (y-1)e”

D2—pp'—2p? Dp2—2pD'+DD'—202 (D-2D")(D+D")

=5 2D'J,}f(-': +x—1)e*dx

Puttingy =c+x as m= —1

= o0 2DJ,}[(-':+:¢:—1)»&* — e”]

= e 21}J,}[(--: + x)e* — 2e*]

= ED,}[(}" x + x)e* — 2e*]

Puttingc = v — x

x
=50 zn"} [ye* — 2e*]

= 55 [0 — 2)e7]
= [(c —2x — 2)e* dx
Putting ¥ = ¢ — 2x
=(c—2x—2)e* — (—2)e*
=(c — 2x)e*

=(y + 2x — 2x)e*
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Puttingc = y + 2x
=Pl =ye*

Complete solutionisZ= C.F +P.|
= Z=fily+2x)+ fly—x)+ ye*

2 2 2
Example 1.11 Solve 223 — 5 aiai, +2 g};’;' = 5sin(2x+ )

Solution: = (2D* — 5DD +2D?)z = 5sin(2x+)

Auxiliary equationis:2m? — 5m+ 2 = 0

=(2m—-1)(m—-2)=0

L)
= m=-
m 2,
cr=f, (y+%)+ A0 +22)

Ssin{2x+v)

P.I =
202 _spp'+2p7

PuttingD? = —4, DD’ = —2,D'? = —1,denominator =0

-~ solution fails as per case I1, resolving denominator into partial fractions
| Ssin(2x+y)
" (20-0")(p-20")

_ s
~ (2D-D")

J sin(2x + (c — 2x)) dx

Putting ¥ = ¢ — 2x
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5 1 :
==——5n J sin cdx
?(0-5)
2

_Sxsin{y+2x)
= (. DTy
2 (2-%)
5 . x
=>[xsin [(c — —) - Zx] dx
2 2
Puttingy = € — z

2

:gfx sin(c + Sx) dx

3 2
2 n

5 [(x) (—cas(c+%x} B (1) (—si’n(c+§x}

=—3xcos(c+3x) +2sin(c+3x)
3 : 3
- —txcos(y+3+30) + Zsin(r+3+30
Putting € = ¥ +§

>P.Il. =—2xcos(y + 2x) + 2 sin(y + 2x)

Complete solutionisZ= C.F +P.|
> z2=f, (y+5)+ A +20-xcos(y+22) + Zsin(y + 2x)
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4.3.2 Non-Homogeneous Linear Equations

If in the equation (D,D")z= F(x,y) , the polynomia f(D,D") in D, D' isnot
homogeneous, then it is called a non-homogeneous partial differential equation.
Working Rule to Solve a Non-Homogeneous-Homogeneous Linear Equation

Stepl: Resolvef (D, D")into linear factors of the form

(D—m;D"—a,)(D—m,D —a,).......... (D—-—m,D'—a,)

Step2: Auxiliary equation is

(D—m,D"—a,)(D—m,D"—a,).......... (D—-—m,D"—a,)=0

Step3: C.F=e®* £ (v + myx) + e* £, (y + mox) + = v e v e + €% F (y + my x)

In case of two repeated factors
C.F=e®f,(y + mx) + xe® f, (y + mx)
Step4: Find P.I. by using usual methods of homogeneous PDE.
Step5: Complete solutionisZ = C.F. + P.I.
Note: If the Auxiliary equation is of the form
(D' —m;D—a,;)(D'—m,D—a,).......... (D'—m,D —a,)=0

Then CF=eYfi(x + myy) + eV (x + myy) + - s ces v e + €™ f (x + M, v)

Example 1.12 Solve (D> —D? —3D +3D )z = *+2¥

Solution: Auxiliary equationis.(D* — D' —3D +3D") =0
Clearly D = D'is satisfying theequation, (D — D"} isafactor.
Dividing by(D —D") , we get

(D—DYD+D' —3)=0

=>(D-D'-0)(D+D'—3)=0
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>CF=fA0b+ x)+ e¥f(y—x)

e X+2¥

P.l= . .
(D*—D?_-3D+3D)

Putting D =1, D' = 2, f(a,b) =0

xex+2}F xex+2}=
=>Pl= 3 =
50?-D'?-3D+3D")  2D-3
PuttingD =1
Pl.= —xe* %Y

Complete solutionisZ=C.F. + P.I.
=>7Z=filv+ x)+ e¥f(y—x)— xexty
Example 1.13 Solve (2DD' + D'* —3D")z = 3 cos(3x — 2y)

Solution: Auxiliary equationis; (2DD' +D'* —3D") =0
=D'(D'+2D—3)=0
=>CF.=fi(x)+ e¥fi(x—2y)

3 cos(3x—2y)
" (20D +D-3D"

Putting DD'=6,D"* = —4

3 cos(3xr—2vy 3 cos{ 3x—2vy
Lp) s lmnd) ey
{(12—4-3D) (8-3D)
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_ 3(843D )cos(3x—2y)
"~ (8-3D')(8+3D")

3 (8+3D Jcos(3x—2v)
(64—9D')

3 (8+3D Jcos(3x—2v)
(64 +36)

=2 (84 3D")cos(3x — 2y)

~ 100

= 2 [8cos(3x — 2y) + 6sin(3x — 2y)]

~ 100
:;—D [4cos(3x — 2y) + 3 sin(3x — 2y)]

Complete solutionisZ= C.F. + P.I.

=7=f(x)+ e¥f(x—2yv) + ;—D[4cos[3x — 2y) + 3sin(3x — 2y)]

4.4 Applications of PDEs (Partial Differential Equations)

In this Section we shall discuss some of the most important PDEs that arise in various branches

of science and engineering. Method of separation of variables is the most important tool, we will

be using to solve basic PDEs that involve wave equation, heat flow equation and laplace

equation.
) ) _ _ 8%u 2 atu
Wave equation (vibrating string) : 3:2 = C Fy)
du 5 8%u

One- dimensional heat flow (in arod) : 3 C 322

a%u
Two- dimensional heat flow in steady state (in arectangular plate) :ﬁ

Note: Two-dimension heat flow equation in steady state is a'so known as L aplace equation.

dx?
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Working Rulefor Method of Separation of Variables
Let u be afunction of two independent variables x and t

Stepl. Assume the solution to be the product of two functions each of which involves only one
variable.
Step 2. Calculate the respective partial derivative and substitute in the given PDE.

Step 3. Arrange the equation in the variable separable form and put LHS = RHS = K

(asboth x andt areindependent variables)
Step 4. Solve these two ordinary differential equations to find the two functions of x and t

aone.

a a
Example 1.14 Solve the equation i =4 a—q: +u giventhat u(x,0) = 5e=%*
Solution: Stepl.

where X isafunction of x aloneand T be afunction of t done.
Step 2.
1L

2 _X'T, = XT’

dx £
L du du, . .
Substituting these values of Pl the given equation

X'T=4XT'+XT =X'T=XAT +T)

Step 3.
X' 4T’ 41
= — = —
X T
Putting LHS=RHS =K
Step 4.
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X.I’
iee —=K
X

= logX = Kx +log(C,

X
= lngC— = Kx
1

4TI—|—1—K
- —

I

T 1
— = (K-1
T 4(_ )

1
= lﬂgT=£—}(K— 1)t +logC,

Using @) and ®in @
u(x, t) = C,C, ekrgs -Vt @
=u(x,0)=C,C.e*™ ... ®
Giventhatu(x, 0) = 5e™2* using in &
= 5e~2% — C,C,ek*
=>C,C =5 K=—2 ... ®
Using ®)in @)
u(x, t) = 53_{2”3{)

4.4.1 Solution of wave equation using method of separ ation of variables

o a%u 2 3%u
Wave equation is given by 3e2 — O i, @

whereu gives displacement at distance xfrom origin at any time t. To solve wave eguation using

method of separation of variables,

2 2
d"u w 9Tu X'T
Carl AT, ax?
2 3%u
. a u . . .
Substituting these values of 2 ,a—zln the wave equation given by (1)
= X
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XT" = ¢2X"T

Arranging in variable separable form= XT = ?1_75%

Equating LHS=RHS=K (* X and T are independent)

X.I",I" 1 Trr
> = Hand;_;T—

X" —KX=0and T — KC’T=0 wrron..... ©)

Solving ordinary differential equations given in @, three cases arise

4411 K is+veand=p’say
X = cieP+c,e™™ | T = cePlyc e Pt
4412 Kis-veand = —p’say
X = c cospx+cysinpx , T = cycoscpt+ cysinept
(ii)When K =0
X=cx+c,, T = c3ttc,
Again since we are dealing with wave equation, u must be aperiodic function of xand t.. the
solution must involve trigonometric terms. Hence the solution given by (ii) i.e. corresponding to
K = —p?, isthemost plausible solution, substituting (ii) in equation @) u(x,t) = (c,cospx
+ €4 8Inpx) (c3coscpt+ cysincpt)
Which is the required solution of wave equation.
Again if we consider astring of length I tied at bothendsat x = 0 andx = 1,
then displacement of the string at end points at any time t iszero .
>u(0,t) =0 ... ®
andu(lLt) =0 ... ®
using &)in @)=0 =,(c3coscpt+ ¢, sincpt)
56 =0 .. D

Using @) in (@) , wave equation reduces to
u(x,t) = c,sinpx (cycoscpt+ cysinept) ........
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Now using ®)in ®)= 0 = ¢, sinpl (c;coscpt+ ¢ sinecpt)

=>sinpl=0 ¢, # 0and (c;coscpt+ cysinept) = 0

>pl =nn=p = ? n=123... .. .- ©)

using @in ®= u(x,t) = czsin% (c5 cos %ﬂﬂ C‘L.S‘iﬂmzd]
Adding up the solutions for different values of n, we get

u(x, t) =234 (an COS %Ct — bnsinm;d) Sinnzrx ,,,,,,,,,

is aso asolution of wave equation

Example 1.15 : A string is stretched and fastened to 2 points [ apart. Motion is started by
displacing the string in the form y = a sin %from which , it is released at time t = 0. Show
that the displacement at any point at a distance ;. from one end at time ¢ is given by

- mx et

v(x,t) = asin TCDST
. . . . . . azy 2 32}’

Solution: Let the equation of vibrating string begivenby =5 = €“ == ...... @

Boundary value conditions are given by :

y(Lt)=0......... ©)
dy .
o =0 @

Let the solution of (1)be given by

V(x, t) = (c,co8px + ¢, sinpx) (c3coscpt+ cySinept)...... ®

Using @) in (&
=0= C,(czcoscpt+ cysincpt)
= € =0 . @
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Using @) in (6) , wave equation reduces to
V(x,t) = cysinpx (c;coscpt+ cySinept) ........
Now using ®)in(®)= 0 = ¢, sinpl (c;coscpt+ c,sincpt)

=>sinpl=0 ¢, #0 and ( cgcoscpt+ cysinept) = 0

nm

=>pl =nn=p = o ©

. . . t ; t
using @in®=y(x,t) = a:zsr:r'.l,niE (c5 cos %+ c‘Lsmmc ) T

Now to use (4), differentiating 0)partially w.r.tz

dv . NTX nmwc . nmuct nmwc nwct
= —= = Cpsin— (—c3——sin——+ c,——cos — )

Puttingt = 0
av . NTx nITe .
- = ¢,5in— ( C. —) = 0 using@®

=5c, =0 v ;0 ... @)

Using GDin (0
. t
= y(x,t) = C5C3 sr,nﬂiﬂ oS m‘:c ........ @)
Using &in (12)
. TX . Mmx
= asin—- = ¢,¢35in——
> c0=an=1
usingin (2
X nct

= y(x,t) = asin——cos ——

[ [

Note : Above example can also be solved using solution of wave equation given by equation

in section 4.4.1
- nmnct . nmcty . nmx
y(x,t) = Z (an cos —— + b, sin E )SEHT
n=1
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It is to be noted that boundary value conditions (2)and (3)have been aready used in this solution.
Example 1.16 A tightly stretched string with fixed end points at x = 0 and x = [ isinitialy at
rest in its equilibrium position. If it is set vibrating by giving to each of its points a velocity
Ax (I —x), find the displacement of the string at any distance from one end at any time t.

d%u 2 8%u

Solution: Let the equation of vibrating string be given by 3:2 = C G2 e @

Boundary value conditions are given by :

u(0,t) =0 ... @
u(l,t) =0 ... ©)
u(x,0)=0 ... @

du

Gtemo Ax (I—x)...... ®

solution of wave equation as given by equation (0)in section 1.4.1 is

t . t .
u(x, t) =%, (an oS ™= + b,sin=> )sm”?x N0O)

It is to be noted that boundary value conditions (2)and (3) have been aready used in this

solution.

Now using @) in (6)
oo

nimx
0= Z ansinT

n=1
@ =0 @
Using @in (&
nmct TUTTX  esessccesces

u(x,t) = X1 by,sin sinT
Now to use (5), differentiating (8) partialy w.r.tt

du Zf’ nic nmct | nmx
— = cos sin
at ol

n=1

[ [
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Putting t = 0,

du e . NMITX

= = — ) _ nb,sin— ...

Using ®in 9
ﬂ.x(i—x]—TCZ nb, sin X

nmwx
Multiplying both sides by Sin Tand integrating w.r.t. x within the limitsg to 1

nix c t nix
= | ix(i-x)sin—dx = —nbﬂf sin® —dx
[ [ 0 [
2nmnx

= —nb f (1 — cos )dx

ic

= —nb,,
2

I .
= menb,=2 J ) ax (1 - x)Sm?dx

= ZAf (1x — xE)SEH—dl’
—1 nix I? nix
= menb, = 22 [(z.x — 7). (— cos —) — (1-2x) (— sin )
nm

E n e rE
& nmwx\ 1"
+ (—2)( 05— )]

2 21
= nenb, = 22| cosnm + ——;
n T’ n I

AP

= ntenb,, =
T

4.25



8’
= menb, = |3
0 ifniseven

if nis odd

taking n =2m —1

gAl®
b, LR
usingd0)in (8), required solution is
3 o

wet) = 8Al 1 sin (2m _g 1)nctsm (Z2m _g 1)mx

Cn* 2 (2m—1)
4.4.2 Solution of heat equation using method of separ ation of variables

du 2 %u

One dimensional hest flow equationisgivenby == = €= ................. @

whereu(x,t)is temperature function at distance xfrom origin at any time t. To solve heat
equation using method of separation of variables,
Let u= XT ....occoovieiiiiaen, @

where X isafunction of x aloneand T be afunction of ¢ alone.

2
L0 gy 07U o
s XTS5 =XT
- du 3%u .
Substituting these values of —, Zin the heat equation given by @
XT'= c?X"T

I ]
. . . x 1T
Arranging in variable separable form= S ZT

Equating LHS=RHS=K (~ X and T are independent)

¥ 17
5>— = Hand—z— =K
X c=T

=>X"—KX =0andT' — Kc’T=0 ..o 3

Solving ordinary differential equations given in (3), three cases arise
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(i) When K is+veand = p*say
X'"—p*X =0and T' = p*c?T
X = AeP*+Be ™ T = (Ce” '
= u(x,t) = (AeP* Be P*)(Ce” "t
= u(x, t) = ((c,eP*+ c,e™P*)er <t
(ii) When K is —ve and = —p’say
X = Acospx+Bsinpx, T = Ce=<'#'t
= u(x,t) = (Acospx +Bsinpx) Ce

= u(x,t) = (¢c,cosPX + C,Sinpx) e~ *

(iii)When K =0
X" =0andT’' =0
S5X=Ax+B, T=C
s>ul(x,t) =(Ax+ B)C

s>ulx, t) =cx+ ¢,

The solution given by (ii) i.e. corresponding to K = —p? , isthe most plausible solution for

steady state.
Special case: When the ends of arod arekept at 0°C

One dimensional heat equation in steady stateis given by :

u(x, t) = (c,cospx + c,sinpx) e Ft @

Alsosinceends of arod arekept at 0°C

u(0,t) =0 ... ®

u(l,t) =0 ... ®
Using ®in @)= 0=C,e 7 ¢
S5C=0 e @

Using (7) in () , wave equation reduces to

—czpzt
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u(x,t) = c,sinpxeFt .
Now using ®in ®= 0 = ¢, sinple™<"# t=sinpl = 0
v ¢, #0ande <"t = 0

>pl=nn=p = % n=123...... ©)

using @in(@= u(x,t) = czsmnzﬂe 2

Adding up the solutions for different values of n, the most general solution is given by

—c*nimit

u(x,t) = lebnsin%e 2

Example 1.17 :A rod of length I with insulated sidesisinitialy at a uniform temperature ;. Its

ends are suddenly cooled to 0°C and are kept at that temperature, find the temperature formula
u(x, t).
du 2 3%u

Solution: One dimensional heat flow eguation is given by 3 C a2

Solution of one dimensional heat equation in steady stateis given by :

u(x, t) = (c,cospx + c,sinpx) e < F % ... ®
u(0,t) =
............. @u(lt) =
.............. ©)

Alsoinitial conditionisu(x,0) = ugy.......... @

The most general solution of heat equation(d) using (2)and3)is given by

—cZn2xt

u(x,t) ==, b,ﬂs::n% e & ... ®
Using @in ®= u, = Zyq b, sin™" ........ ®
Multiplying both sides of &by sin E, and integrating w.r.t. x withinthelimits0 tol

J:uu sm I dx—b jsm Mc:E
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> b, = —f; Uy Sin— dx
—2 uu[ l mtx]E
= — COS——
I Inm I 1,
& . .
_ 20y (_qyn] —, ifnisodd
0 ifniseven
Putting n=2m—1,> b, = {2::231 ............. @

Using (7) in (5), the required temperature formulais

[:Zm ]_]-;r['x —cZ(zm—-1"m2t
u(x, t) = Z 1" E e 2

4.4.3 Solution of Laplace equation (two-dimensional heat flow) using method
of separation of variables
Consider the heat flow in auniform rectangular metal plate at any time t; if w(x,y) bethe

temperature at time two dimensional heat flow equation is givenby

du (62 a%u )
—=c\—+ —
dx2

at ay?
] du
In steady state, doesn’t change with andl hence F =0
az
~ Two dimensional heat flow equation in steady stateis given by— + a_z =0......... @
W

where u(x, ¥)is temperature function at any point (x,¥) of the rectangular metal plate. Thisis
called Laplace equation in two dimensions. To solve Laplace equation using method of
separation of variables,

Letu= XY ... @
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" 0%u 8*u o
Substituting these val ues of 322’ 3uZ in the Laplace equation given by (1)
x< " dy

X"Y+ XY = 0

I I

. . . X _ ¥
Arranging in variable separable form= 5 = —

Equating LHS=RHS=K (~ x and y are independent)
X! '

s—=Kand—— =K
X ¥

=>X"—KX=0and Y'+KY =0 ... ©

Solving ordinary differential equations given in @, three cases arise

4431 Kis+veand =p* say

X = ce+c,e™ | Y =cycos py + cusinpy

= ulx,y) = (c,e?+ c,e ) (ccospy + c sinpy)

4432 Kis-veand = —p’say

X = (cycospx + cysinpx , Y = (€™ + ¢ e™)

= u(x,y) = (cicospx + ¢, sinpx)( c;e?Y + c,e™PY)

(ii)When kK =0

X"=0and Y' =0

>X=cx+c,,Y=c3y+¢,

sulx, t) = (c;x+ c)(cy +cy)

The solution given by (ii) i.e. corresponding to K = —p~ , isthe most plausible

solution for steady state.

Example 1.18 An infinitely long rectangular uniform plate with breadth = is bounded by two
parallel edges maintained at 0°C. Base of the plateis kept at a temperature u, at all points.

Determine the temperature at any point of the plate in the steady state.

82 82
Solution : In steady state, two dimensional heat flow equation is given byf + H—j =0...QD

2

Boundary value conditions are
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u(my)=0............

lim, ,u(x,y)=0, 0 <x< M. @

u(x,0)=uy , 0<x<mM...... ....00
Solution of (O) isgiven by :

u(x,y) = (c,cospx + c,sinpx)( c,eP¥ + c,e™) ...

Using @in ®

=u(0,y)=0= c;(c;e?™ + c,e )

Using @ in (&
ulx,y) = c,sinpx( c;e?¥ + c e ™).
Using ®in ®

= u(my) =0 = c,sinpn( c;e?¥ + c,e™®)

> sinpn=10

SPT = NT

SP =1 ..eene ©)

Using (9) in(8)

= ulx,y) = cosinnx( ce™ + cpe™™) e
Using (4) in0)

&ﬂu[x, v)=0= c, sinnx&i_ﬂ( ce™ + c,e”)

>c3=0 ... @)
Using 1D in 10)

= u(x,y) = c,cysinnxe™™
The most general solution of heat equation is given by

u(x,t) =X, b,sinnx.e™™. ... @where c,c, = b,
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Using ® in 40

=>u(x,0) = ug=2n=q1 b,Sinnx

Multiplying both sides bysin nx;, and integrating w.r.t. x within thelimits0 to=

T

2 .
b, = —fuﬂsznnxdx
11
0
4"?.,1'.‘} . .
2ugy [—cosnx]™ — chn is odd
= b,= =|\nmc - | B)
™ no-o 0 ifniseven

Letn=2m—1asn isodd

Using @3) in (2) the required temperature formulais:

duge 1
u(x,t) = HDZ am = ljsin(Zm— 1)x.e~(2m-1y
n=1
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Chapter 5
LAPLACE TRANSFORM
5.1 Introduction
A transformation is an operation which converts a mathematical expression to a different but
equivalent form. The well-known transformation logarithms reduce multiplication and division to a simpler
process of addition subtraction.

The Laplace transform is a powerful mathematical technique which solves linear equations
with given initial conditions by using algebra methods. The Laplace transform can aso be used to solve
systems of differential equations, Partial differential equations and integral equations. In this chapter, we will
discuss about the definition, properties of Laplace transform and derive the transforms of some functions

which usually occur in the solution of linear differential equations.
5.2 Laplacetransform

Let f(t) be a function of t defined for al t > 0 .then the Laplace transform of f(t), denoted by
L[ f(t)] isdefined by

LLF®] = J; et f(©)dt

Provided that the integral exists, “s” is a parameter which may be real or complex. Clearly L[f(t)] is a
function of sand is briefly writtenas F(s) (i.e.) L[ f(t)] = F(s)
Piecewise continuousfunction

A function f(t) is said to be piecewise continuous is an interval a < t < b, if the interval can be sub
divided into afinite number of intervals in each of which the function is continuous and has finite right and
left-hand limits.

Exponential order

A function f(t) is said to be exponential order if lime=stf(t) is a finite quantity, where s >

t—oo

O(exists).
Example: 5.1 Show that thefunction f(t) = et’ isnot of exponential order.

Solution:

. 3 . 3 . 3
lim e—st et’=lim e—st+t" = lim et ~5¢

t00 t->00 t—00
= e® = oo, not afinite quantity.
Hence f(t) = et’is not of exponential order.
Sufficient conditionsfor the existence of the Laplace transform
The Laplace transform of f(t) exists if
) f(t) ispiecewise continuousintheinterval a <t < b

i) f(t) is of exponential order.
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Note: The above conditions are only sufficient conditions and not a necessary condition.

Example: 5.2 Provethat Laplace transform of et’ doesnot exist.
Solution:

. 2 . 2 . —
lim e—st et"=lim e—st+t" = lim et’ ¢

t—oo t—oo t—oo

= e* = oo ,not afinite quantity.
~ et isnot of exponential order.
Hence Laplace transform of et does not exist.
5.3 Propertiesof Laplacetransform
Property: 1 Linear property
Llaf(t) + bg(t)] = aL[f(t)] = bL[g(t)] , whereaand b are constants.
Proof:
Llaf(® £ bg(®)] = J, laf(t) £ bg(t)] e~
=a [, f(De=stdt + b [ g(t) estdt
Llaf (5) £ bg(O)] = a LIf()] £ b L[g(®)]

Property: 2 Change of scale property.
If L[f(O)] = F(s), thenL[f(at)]=2F(C) ;a>0

Pr oof:
Given L[f(t)] = F(s)
a f) st f(6) dt = F(s) -+ (1)

By the definition of Laplace transform, we have

LIf(an)] = J; et f(at) dt -+ (2)
Put at= xie.,t=f:~dt=di

(2) > Lif(a)] = | Ome_Tsx f(x) %x
1 oo -—sx
=;f0 e« f(x)dx

o =St

1
Replace x by t, L[f(at)] = - Joee f(Ddt

1 S
L[f(at)] = F&)ia>0

Property: 3 First shifting property.

If L[f(t)] = F(s),theni)  Lle~2tf(t)] = F(s + a)
i) Llevf()] = F(s —a)

Proof:

() Lle~f(©)] = F(s + @)



Given L[f(t)] = F(s)
a f) et f() dt = F(s) -+ (1)
By the definition of Laplace transform, we have
Lle=atf(at)] = [, e=st e=atf(¢) dt
= f0°° e~ (st £(¢) dt
=F(s+a) by(1
(i) Lletf(at)] = [ e=st extf (1) dt
= [T e~ £(1) dt
=F(s-a) by()
Property: 4 Laplacetransformsof derivatives L[f'(t)] = sL[f(t)] — f(0)

Proof: u=e>st
LIf®] = J'OOO e~st f'(t) dt = meudv wdu= —se-stdt
= [w]§ — [ ub dv = f(t)dt
= le= FO15 — [ £ (~s)e-r de ~v=JfDadt
= 0 - £(0) + sLIf(®)] =/@

= sL[f(®)] - f(0)
LIf' (] = sLIf(®)] - £(0)
Property: 5 Laplacetransform of derivative of order n
LIf(D)] = snLIf()] = 51 £(0) = s72f'(0) - = sn-2 f7(0) — - fn=1 (0)
Proof:
We know that L[f'(t)] = sL[f(t)] — f(0) - D
LIf(®©] = LIIf O]
= sL[f' ()] = £(0)
= s[sLIf(®)] = F(O] - f(0)
= s2L[f(©)] — sf(0) — f(0)
Similarly, L[f"(0)] = s3LIf(©)] — s2f(0) — sf'(0) — f"(0)
Ingenera, L[fr(t)] = s"L[f(©)] — s»~t f(0) — sn=2f'(0) --- — sn=3 f"(0) — -~ fn=1 (0)

Laplacetransform of integrals
Theorem: 11f L[f(t)] = F(s), then Lf f®dt] = &)
0

Proof:
Let, g(8) =/, f(O)dt
“ g = f©
And  g(0) = [ f(dt =0
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NowL[g ()] = LIf()]
sLIg(®] - g(0) = LIF©)]
sLig(O] = LIFO] - g(0) = 0
Llg(®] = 2

S

t F(s)
fof(t) dt = —
Theorem: 21 L[f(t)] = F(s), then L[tf(£)] = — d_“ F(s)

Proof:
Given L[f(t)] = F(s)
f0°° e=st f(t) dt = F(s) - - (1)
Differentiating (1) with respect to s, we get
;is (gocé-st F(t)dt =F(s)
j 7L et )f(@) de = ZF(s)
J =(=te=st f(t) dt = © F(s)
0 ds
— [T e f(t) dt =+ F(s)
—LItf©)] = ZF(s)
“ LLf(©)] = - ZF(s)
Note: In general L[tnf(t)] = (—1)nz_';F(s)

s2—s+1

Example: 5.3 If L[f(t)] =

(2s+1)2(s—1)
Solution:

Given L[f(£)] = ——=*1 _ _ F(s)

T (25+1)%(s—1)
LIf20] =2F (%)
@5
(23+1)" (3-2)

52 3 ]
1 [TEH

2t (D)

1
2

s2—-25+1
T a(s+1)3(s-2)

then find L[f(2¢)].
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L aplacetransform of some Standard functions

Result: 1 Provethat L[¢n] = T2l
S“

Pr oof:

We know that L[ff[‘:ll] = _[-DI:-’_” f{!] ot
L= J et ende

L] = fTe(Y) &

L 5

Tim=1) W
L =—— v f e ™ du

Result: 2 Provethat L(eat) = %1 s>a
Pr oof:
Weknow that L[f(t)] = f e=st f(t) dt
o Leat) = ["e~ste dt

= [ e7D f(e) dt

_ —t(s—a) *®
—(s—a) 0
1
—[0— ()]
S—a
~Llewt) =
S—a
Result: 3 Provethat L(e—2t) = % ,s>a
sTa

Proof:
We know that L[f(t)] = f e=st f(t) dt
w L(emat) = [ e ste™@ dt

— fooo e—t(s+a) f(t) dt

e—t(s+a) ©

_(S+a) 0

—[0 - ()]

sta
~ Llewt) = ___

s+a

Let st = 1 (1)
= :

5
i = -

=

Wheat = 0(1)=>u—1

= oo (1) =>u — e




Result: 4 Provethat L[sinat] =
sZ+a?

Proof:
Weknow that L[f(t)] = f0°° e=st f(t) dt

L[sinat] = fooo e~st sinat dt

¥ o T a—mt ORI .
T + |g @ " eosht dt — ——3

-

a L[rosat] = =

Result: 5 Provethat L[cosat] =

s2+a?
Proof:

We know that L[f(t)] = fooo e=st f(t) dt

[* e=st cosat dt
Llcosat] =" e cosa

. _ S I . S TR TRNNNN |
o L[Cosat] - 52+a2, s> |a|; s -IL' - o .l'.'-'bl!ll. e P

Result: 6 Provethat L[sinhat] = _* S > lal

s2—a?

Pr oof:

eat_e—at

Wehave L[sinhat] = L[

- ]
[L(e) — L(e~)]

_L]

s—a s+a

B

sta—s+a
s2—a?

NI NP, Nlm N -

N
Q

2—a?
~ L[sinhat] = _* s> |a

s2—q?

Result: 7 Provethat L[coshat] =

= 5S> lal

Pr oof:

eat+e—at

Wehave L[coshat] = L[
2

[L(e) + L(e~D)]

|-
+
| =

7
NI= NP Nk N -
“

Q
%)
+
Q

N
7}
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Example: 5.4 Find L[t/2].

Solution:
5 i
We have L™ =——
=
1
Puti ==

i I ETS
ik [::] _ TG + TR+ 1) - nra

e I
1 1

Example: 5.5 Find the Laplacetransform of t "3 or 7
Solution:
We have L[t7] = "D
sn+1

Putn = _1
2

1 r{-3+1}
=k |T_fl ki - »In+1)=nln

r(l)=r

Result: 8 Prove that L[1]= %

Solution:

L= [e™ 1.dr

R
o b

| —s

(w}

1

1%
=[u—:|=;



FORMULA

LIf(D)] = F(s)

LIf(D)] = F(s)

L[sinat] =
s2 + a?
L[1] = S1 P
L[cosat] = Z 1 a2
L[t] = 12
L[coshat] =
SZ — aZ
r(n+1) ., _ . :
L[tr] = if nisnot an in
(7] sl Snot an integer L[sinhat] =
s2 — a2
Litr] =™ ifnisaninteger
sn+l
L(eat) = =
s—a
L(eat) = _©
s+a

Problemsusing Linear property

Example: 6 Find the Laplacetransform for the following

i. 3e2+2t+1

i (t+2)3

iii. at

iv. e%t 4+ 3

v. sinV2t

Vi.

Vii.

viil.

ix.

Xi.

sin(at + b)

cos32t

sin3t

sin?t

cos?2t

cos5tcos4at
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Solution:
(i) Given f(t) =3t2+ 2t + 1
LIf(t)] = L[3t2 + 2t + 1]
= L[3t?] + L[2t] + L[1]
= L[3t2] + L[2t] + L[1]
= 3L[t?] + 2L[t] + L[1]
=32 214 1

~L[3t2+2t+ 1] = R

(ii) Given f(t) = (t + 2)3 = t3 + 3t2(2) + 3t22 + 23
LIf(t)] = L[t3 + 3t2(2) + 3t22 + 23]
= L[t3] + L[6t%] + L[12t] + L[8]
=S+ BeRet
(iii) Given f(t) = at
LIf(®] = Llat] = L[etlosq]
Llat] = —

s—loga
(iv) Given f(t) = e2t+3
LIf(t)] = L[e?+3] = L[e?t. e3]

= e3L[e%]

o L[e?t+3] = 3 [i]

V) Llsiny2t] = ?j;z

(vi)Given f(t) = sin(at + b) = sinatcosb + cosatsinb
L{f(t)] = L[sin(at + b)]
= L[sinatcosb + cosatsinb]

= cosb L[sinat] + sinb L[cosat]
L[sin(at + b)] = cosb _°_+sinb _°

s2+a? s2+a?
(vii) Given f(t) = cos3 2t = 1[3C052t + cos6t]
4
LIf(t)] = lL[3cosZt + cos6t]
4
=1 [3L(cos2t) + L(cos6t)]

4

=B+

4 s244  s2436

L[cos32t]=1_[3 .
4 5244 52436

“ cos30 =

3cosf + cos360

4
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(viii) Given f(t) = sin? t = 1 [3sint — sin3t]
4

LIf(t)] = %L[Ssint — sin3t]

= [3L(sint) — L(sin3t)]
=i4[3 -]
4

5241 5249

. 3.1 1
L[sin3t] = | -
4 s241  s249

(ix) Given f(t) =sin2t = 1—cos2t

LIF(D] = L [%]
[L(1) — L(cos2t)]

1 s
[ - ]
s s2+4

Llcos22t] = [L = _° ]
2 s s’4+4

(x) Given f(t) = cos2 2t = 1+cos4t

1
2
1
2

1+cos4t

Lif®l = L[ ]

2

(xi) Given f(t) = cos5tcos4t
L[f(t)] = L[cos5tcos4t]
= % [L(cos9t) + L(cost)]

s
=1 +
2 s2+81 5241

Problems using Fir st Shifting theorem

Lle~af(1)] = L[f(D)]s-s+a
Lleatf()] = L[f(D)]s-s-a

Example: 5.7 Find the L aplace transform for the following:

i. te 3t v. sinh2tcos3t
i, t3e2 vi. 72!
vii. 32—t

iii. ettsin2t

. viii. e—2tsin3tcos2t
iv. e-5tcos3t

ix. e3tcos4tcos2t
X. etcos3tsin2t
xi. cosh3tsin2t
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(i) te-3¢
L [t€_3t] =1 [t] s—s+3

= L) =1

% 5o5+3 s?
o Llte=3] = 1
(s+3)2
(i) t3e?t
L[t3e?] = L[t3]s 52

=0 L)) = 2

st Lo $3+1
o L[t3e2t] = 6
(s—2)*

(iii) ettsin2t
Lle*tsin2t] = L[sin2t]s—s—4
2

m s—os—4
2
= e
_ 2
T s2-8s+16+4

. Lle*tsin2t] = 2

52—8s+20
(iv) L[e~5tcos3t]

Lle—5tcos3t] = L[cos3t]s—s+5

S

s24327 55545
__ st5
(s+5)249
_ 5+5
s24+10s+25+9

s+5
LleStcos3t] = "~
s24+10s+34

(v) L[sinh2tcos3t]

2 -2
L[sinh2tcos3t] = L [&) cos3t]
2
[L(e%tcos3t) — L(e—%tcos3t)]

[ - ]

s243% 52 sP432 o542

1
2
1
= P [L(Cosgt)s—m—Z - L(COSBt) s—>s+2]
1
2

L[sinthcos3t]=i[ P s ]
2 (s—2)249  (s+2)%249

(vi) L[cosh3tsin2t]
3 -3
L[cosh3tsin2t] = L [&) sin2t]
2
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[L(e3tsin2t) + L(e 3tsin2t)]

(2 +C° ]

s2422 53 s%422 5543

1
2
1 ,
= E [L(Sant)s—)s—3 + L(SinZt) s—>s+3]
1
2

. L[cosh3tsin2t] = i[ S ]

2 (s—3)%+4  (s+3)%+4

(vii) 22t
L[t22t] = L[tZeloth]

= L[tZetlogZ] = L[tz]s—>s—log2
2!

=)
s3 s—s—log2
_ 2
" (s—log2)3
2
T2 = 2
= L[ez2] (s—log2)3
(viii) £32-t

L[t32-t] = L[t3elogz_t]
= L[tBe—tlogZ] = L[t3]5—>s+logz

=%

s* sos+lo g2

_ 6
(s+log2)*
6
(s+log2)*

(ix) L[e~2tsin3tcos2t]

s L[t32-t) =

Lle~2tsin3tcos2t] = L[sin3tcos2t]s-s+2
= L L[sin(3¢ + 2¢) + sin(3t — 2£)] sos+2
2

= iL[sin 5t + sin t]
s—s+2

[L(sin 5t) + L(sint)]

1

s—s+2

Nlm, N RN

st o
2452 s241% o oo
R

(s+2)2425  (s+2)2+1

« Lle-2sin3tcos2t] == "[__ > _+_ '

2 (s+2)2425  (s+2)2+1

N | =

(X) L[e—3tcos4tcos2t]
Lle—3tcos4tcos2t] = L[cos4tcos2t]s—s+3
=1 L{cos(4t + 2t) + cos(4t — 2t)]
2

s—s+3

=1 L[cos6t + cos2t]
2 s—=5+3
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« Lle=3tcosdtcos2t] = 1|

(xi) L[e*tcos3tsin2t|

—

—-5+3
S
s 4 ]
s2462  s2422 o413
s+3 + s+3 ]
(s+3)2+36  (s+3)2+4
s+3 . s+3 ]
2 (s+3)2436  (s+3)%2+4

Lle*tcos3tsin2t] = L[cos3tsin2t]s—s—4

X L[sin(3t + 2¢t) — sin(3t — 20)]

]

2 s—s—4
=1 L[sin 5t — sin t]
2 s—os—4
1 . .
= [L(sin5¢) — L(sin®)]
= _1 [ 5 - L
252452 s2412 oy
1
=l—> __+ ]
2 "(s—4)2+25 (s—4)%2+1
~ Lle*tcos3tsin2t] = 1[ ° +_ '
2 (s—4)%2+25 (s—4)%+1
Exercise: 5.1
Find the Laplace transform for the following
1. cos? 3t Ans i ¥ + °
4 s2+9 52481
2. sin3tcos4t Ans 1 [L _—
4 s2+49  s241
3. tezt Ans, _1
(s—2)%
4. tte—3t Ans_4__
(s—3)5
5. ettsin2t Ans, 2
(s—4)2+4
6. e~Stcos3t Ans _st5
(s+5)%2+9
7. t33¢ Ans___ 3. __
(s—log3)*
8. t54-t Ans_5'
(s+log4)®
0. e—2tsin3t0052t Ans 5 1
(5+2)2425  (s+2)2+1
10. @-3tcos4tcos2t Ans __st3 4 i
(s+3)2+436  (S+3)%+4
11. sinhtsin4t Ans %+ - +
(s—1)2+16 (s+1)~+16
12. cosh2tcos2t Ans 1| 52 _ s+2
2 (s-2)24+4  (s+2)2+4
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5.4 Laplacetransform of derivativesand integrals

Problemsusing theformula
LItf (0] = 2 LIf(®)]

Example: 5.8 Find the Laplace transform for tsin4t
Solution:

L[tsin4t] = iL[tsinéLt]
ds

 —d; 4
T ds [52+4]

_ —[(s*+16)0—4(25)]
- (s2+16)2

8s

. Ltsin4t] =
(s2+16)2

Example: 5.9 Find L[tsin?t]
Solution:
(1—cos2t)

L[tsin?t] = __dL[sin2 t] = L (|

ds ds 2

- 14 [L(1) — L(cos2t)]
2ds

=-_"[-_"]

2ds s s2+4

_ li [SZ+4—SZ]
2ds " s(s%+4)
1d 4

2ds s(s2+4)
4d 1

2ds s(s2+4)

—_9 [o—(3s2+4)
(s3+4s)

2
. L[tsin?t] = 2@+

(s3+4$)2
Example: 5.10 Find L[tcos?2t]
Solution:

L[cos?2t] = __dL[cos2 2t] =
ds ds 2

14 [L(1) + L(cos4t)]

—_dL (1+cos4t)

2ds
1d 1 s
=—__[-+ ]

2ds s s2+16

1 [— 1 (s2+16)1—s.2s]
25 s? (s2+16)2

- 1= 1 s2+16—2s2]
2 s? (s2+16)2

2
& L[cos?2t] =1 [i - 1o _
22 (s2+16)2
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Example: 5.11 Find the Laplacetransform for tsinh2t
Solution:

L[sinh2t] = jL[sinth]
ds
_—dy 2
T ds [52—4]
2
— —Is =4 0-2(25)]
GE0k

. Ltsinh2t] = o
()2

Example: 5.12 Find the Laplacetransform for f(t) = sinat — atcosat
Solution:
L[sinat — atcosat] = L(sin at) — a L(tcosat)

—d
2 _ — a(—L[cosat])
s2+4qa? ds
d
a_+a’l ]
s2+4qa? ds s2+a?
a [(52+a2)1—s(2s) ]
=~ 4qgl—- "7
s24+q2 + (s24+a?)2

2442_¢2
— a +a[s+a S]

s24+qa2 (s2+a?)?

aZ—SZ

=% +a
s2+a? (s2+a?)?

a(s?+a®)+a(a®—s?)
(s2+a?)?

_ a52+a3+a3—a52)
(s2+a?)?

. 2a3
~ L[sinat — atcosat] =

(s2+a?)2

Example: 5.13 Find the Laplace transform for the following

(i) te—3tsin2t (i) te—tcosat 9iii) tsinhtcos2t
Solution:
() L[te-3tsin2t] = L[tsin2t] = " L[sin2t]
s—s5+3 ds s—-s5+3
42

ds s2+2%2 ;.43
[(s2+4)0-2(25)]
(s%+4)?
— [ 4s ]
(s*+4)? 5,643

L[te3tsin2t] = Hetd)

s—s+3

((s+3)2+4 )2

. —d
(i) L[tetcosat] = L[tcosat] = L[cosat]
s—s+1 ds s—s+1

—=d(_s )
ds s*4+a? g511
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. [(52+a2) 1—5(25)]

— (ZF¥ad)Z
(s7+a?) s—s+1
2_.2

- a’-s 1
(s2+a?)?

_ [ s2_q2

(s2+a?)?

s—s+1

s—s+1

2_,2
L[te~tcosat] = e
((s+1)%24a? )2
(ii) L[tsinhtcos2t]

L(tsinhtcos2t] = L [t (ﬁ) cos2t]
2

=1 [L(tetcos2t) — L(te~tcos2t)]
2

= 2 LdL[COSZt] +iL[c052t] ]
2 ds s—s—1 ds s—-s+1

d s

1,—d

=E ds (sz-lil) -'_d_(2 ) ]

s—s—1 s 5T o541

_ 1 (s°+4)1-s(2s) (s2+4)1—s(2s)

=t e
1 4—s? 4—s?

= _[-[" ] +[ ] ]
z (s*+4)? s—s—1 (s*+4)? s—-s+1

12—
. L[tsinhtcos2t] = i[ (s~ —4 4—(s+1)* ]

2 ((s—1)24+4)2  ((s+1)%2+4 )2
Problemsusing theformula
dZ
Lle2f ()] = —LIf ()]
ds?
Example: 5.14 Find the Laplace transform for (i) tzsint (ii) t2cos2t

Solution:
2
(i) L[t%sint] = d_ZL[sint]

ds
> - 1
=[]
ds? s241
_ d  [*+1)0-1(2s)]
T ds (s2+1)2
_4d —2s
T ds (s2+1)2
d s
=—2_(___)
ds (s%2+1)2

—2[(s241) (1)=s2)(F +1)(29)]
(s2+1)*

_ =2(s2HD)[(s24+1)—4s%]
N (s2+1)*

_ —2[1-3s%]
T (s2+1)3

2_
. L[tZsint] = o5 2

(s2+1)3

s—s+1

]
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(i) L[t2cos2t] = iL[cosZt]

ds?
d? s
ds? s24+4
_d [(s*4+4)1-s(25)]
ds (s2+4)?
_d (4-s%)
ds (s2+4)?

2 2 2 2
s+ (=25) (4 -9)2(s +H)(29)]
- (s2+4)*

_ 25(s2+H D) [(s2+4) (- 1)—(4—s2)2]
N (s2+4)*

_ 2sls?=12]
T (s%44)3
2_
o L[t? cos 2t] = asls12
(s24+4)3

Example: 5.15 Find the Laplacetransform for (i) t2e—2tcost (ii) t2e*tsin3t
Solution:

2
(l) L[tze_ZtCOSt] = L[tZCOSt] §-5+2 - _L[COSt] §-5+2

ds?
=D
d_SZ SZ"r‘l s—s+2
_d [(52+1)1—s(2$)]

- 2112
ds (s5+1) S5+

_ d 1—52 ]

T ds H(s241)2
ds (s*+1)“ ¢ o190

2 2
[(s +D (—29) —(1—52)2(sz+1)(25)]]

(1)t s—os+2
_ 2+ 1) [[(sz+1)(—25)—4s(1—52)] ]
*D* s—5+2
_ [c2s3-25—4s+4s%
(s+1)3 §-5+2
— [253—65 ]
D)7 §-5+2

3_
L[tze_ztcost] — 2(s+2)°—6(s+2)
((s+2)2+1)3

2

d .
(i) L[t2e*sin3t] = L[t2sin3t] (oo 4 = EL[S”&] sd

L3

ds? 249 ¢ o 4
_ d (s*+9)0-3(2s)
o ds[ (s249)2 1
— d [ —6s | = —6 d [ S

ds (s2+9)2 ds (s2+9)2

s—s—4

s—s—4 s—s—4

2
[(s2 19 (D -2 2+9)(25)j
- (s2+9)*

s—os—4
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— _6(s*+9) [_U52_+9)i$2] ]

(s>+9y* s—os—4
- 6] 9-3s2
(s7+9)* s—s—4
_ [18s2-54
(s249)3 s—s—4
L[t?e*sin3t] = 18(s—h*~54
((s—4)249 )3
Exercise: 5.2
Find the Laplacetransform for the following
1. tsinat Ans _ 2as
(s2+ a?)?
2
2. tcosat Ans, _s-a*
(s2+a?)?
3. te *sin3t ANS. 6(s+4)
(s+4)2+9
4. tcos2tsinbt Ans __8 _ _ 4
(s24+64)2 (s2+16)2
2
5. te~2tcos2t Ans. _(6-2)
((s+4)%+4)2

Problemsusing theformula

L[] = [7 LIf(D]ds

t

Thisformulaisvalid if lim@ isfinite.

t-0 t

The following formulais very useful in this section
ds
[ = =logs
fd—s = log(s + a)

s+a
sds
f s24+a?

= Elog(s2 + a?)
2

cosat
|

Example: 5.16 Find L |

t
Solution:

.. cosat cosa(0) 1
lim——=—"—"—+=-=o00
t-0 t 0 0

=~ Laplace transform does not exists.

Example: 5.17 Find L [*%]
Solution:
li sinat — sina(0) — 0
t-0 t 0 0
= lim a cosat (by applying L—Hospital rule)
t—0
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lim a cosat = acos0 = q, finite quantity.
t—0

Hence Laplace transform exists

L [i:t] = fsoo L[(sinat)]ds

oo
a
= fs $2+q2 ds

15 o

= tan -J
as

= [tan—1oo — tan—1 7]

a
= [E — tan—1 §]
2 a
AL = cot™1E
t a
in3
Example: 5.18 Find L [*™]
t
Solution:
sin3t _ 3sint—sin3t
t 4t
lim sin3t — lim 3sint—sin3t
t-0 t t—0 4t
=00_0 (by applying L—Hospital rule)
0o o0

. 3sint—sin3t
= llm—= 0
t—0 4t

Hence Laplace transform exists

t 3sint—sin3t
L [su; ] = LI sin 4.;111 ]

B B e
—4_|r_... L[(3sint — sin3t)]ds
=ik B ) s

— 7 -1 = .:-.
Jtan~* 5 — tan™? |

1
=
d

[3(tan—1 oo — tan—1s) — (tan—! oo — tan—1 )]
3

B B S N )

[C—tan-1s) — C—tan-12) ]
2 2 3

[cot-1s — cot—17]
3
sinZtcos3t]

Example: 5.19 Find L [e—2t
t

Solution:

_2¢ sin2tcos3t sin2tcos3t
L[e?t ]=L[
t t s—os5+2

=2 [ Lisin{3r + 2¢) —sjn(3t —20)ds]

= :[_L Li{sin5¢} = Lisin I}J.r!_k:]_ g
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| =

S
— ? 5 :4_:_.2 52_1: -q—--q—'.:'

Ian L2 —tant ] l
-

|

Gt

k| =

[cot-12 —cot-15]
5 s—s+2

[cot™1 A cot~1(s + 2)]
5

Nl = N =

—at__,—b
Example: 5.20 Find the L aplace transform for e e
t

Solution:

. e at_gbt . eV—e0 1-1 0
lim————=1lim = —= -
t—0 t t—0 0 0 0

_ lim —ae—t4pe—bt
t—0 1

= —a+ b = b — a = afinite quantity
Hence Laplace transform exists.

—at_e

L Q f L[e at — e bt]ds

= fs [L(e~at) — L(e~bt)]ds

Jo 1.1 Jds
sta s+b

= [log(s + a) —log(s + b)|?

= [log E]
s(1+f)
= [log—
s(1+ )
= logl — log_ = 0-log s+a wlogl=0
s+b s+b
sta
=log —
s+b
Example: 5.21 Find the Laplacetransform of 1=cost
t
Solution:
lim 1oeost _ 0 lim*™ = %= (use L— Hospital rule)
t—0 t 0 t-0 1 1
L [F*] exists,
t
L[] = [ L1 — cost)]ds

= _|' |_ri ——_,5_—1}-.*4’5

E+ a2

[[mn‘* co —fan™* E] — (tan™*

w —tan~t _L.'_‘.Il ]

{g-mn'lg} - (ﬂ— tan 1 5'} ]

F—5+2

r—+g+2

(use L— Hogpital rule)
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= [logs — %108(52 +1)]

= [logs — log\/EZ_—I——l']oo

S

= [ log \752—+1]S
S

Vs2+1

VSEFT

N

=0-log

= log

Example: 5.22 Find the Laplacetransform for cosat—cosbt
t

Solution:
|jm £osat—cosbt _ 1-1 _ 0 (use L— Hospital rule)
t—0 t 0 0
. —asinat+bsinbt . .
= lim _“"T — 0 = afinite quantity
t—0 1

Hence Laplace transform exists.

I [M] = fsm L[cosat — cosbt|ds

= fsm[L(COSat) — L(cosbt)]ds
=.J:::-." {5?::?._- - :;_lill!:] {']I.'ﬁ:

1 1
= [E log(s? + a?) _EIOg(SZ + b?)]

[ee]

s
[ee]

s%+a?

1
=3 [log s2+p2] ¢

e )|
: g
log——
1

5| 14—

=

=1 (1+57)
— & g I—;w—
: \1v=Z )]
1 :)Sz-i-az 1 s2+a?
=_[log1l — log ] =—"_[log | [+ logl = 0]
2 s24b? 2 s24-b2
2 2
= log**"]
2 s24a?

Example: 5.23 Find the L aplace transform of ﬁ
t

Solution:

sin’t __ 1—cos2t

t 2t

.. 1—cos2t 0
lim———= -
t—0 2t

Im>2™ = =0 (useL— Hospita rule)
t—0 2 1

L aplace transform exists.
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L[f’f'r':--’] = .L[‘ E] L LI(1 — cos2r)lds
= _—J:' [L{1} — L{cos2t))ds
= .%-I:: l:k% = s:-x\.:m":'
== :_ I]c-g:: - :;lugfsl +et]L'

[logs — logVs2 + ]

Example: 5.24 Find the Laplace transform for sin2tsinst
t

Solution:

L [M f L[sin2tsin5t]ds

3 E[J.[n:nsl:—En — L{cosTt)]ds

—f_ll”[ﬂmsi?t} — L{cos7t)]ds [oosl-4y = easl]
-r L =+4n:]r'r5

[

L F

-l

= flﬂm‘ +9) — tlog(s* +49)]

LT, —ﬂl
— i Ll
4 gs +40

] [+ logl = 0]

249

Problems using LL[ f[ndr] L[f[f}]

t
Example: 5.25 Find the Laplace transform for (i) fot e—2tdt (ii) focosztdt

t t
(iii) [, tsin3tdt (V) t [, costdt
Solution:

(1) L[j E‘“rff] = 'ii’_‘tl = LH}
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&L [j-: E‘_E:fﬂ'} =1

cls+3%

(i) L [J'D cnsil‘-dr] = ~%l['i'ﬂ'ﬂf] = 1{ : ]

5 hsi+d

L5 [L’ rnszrd:} = —

§ 244

(1) L. UU rse’:zﬂrr{r} = }L[rsnﬁt]
= ; [; [L[::IHEF]]]

-1|a [ 3
= T EI:-‘H"[
=l
= 5 LsTep
L ol L
s [j'j rsmjtdr] =—

(1v) L [tj: msrdt] = %f_ [}: mstr!'t]
= f[& {_-.-:-1-1]]

] ) ]

ds Ls®+1

=
- (=137

oL If; rsmﬂrf!r] ==

.':?4.1:.!

t
Example: 5.26 Find the Laplacetransform for et [ tcos4tdt

Solution:
L [F I .r._-: rr.g:-?-le!drl = I-rl-'r Jrﬁs‘”d:[; 5+l = I--'-I. :-: {.I_I’l'.l.'i-'il'}l_‘: 51
» _ (1 d s )

sds s2+16 g 54q

[-1 (s*+16)1-5(29)]
s (s2+16)?

s—s+1
[-1 (s*+16-25%)]
s (s2+16)2

s—s+1
[-1 (=s*+16)]
s (s2+16)2

_ 1 (s2-16)
s (s24+16)2

~ L et (ttcos4tdt] =
Js

s—s+1

s—-s+1
L[ s+1)?-16 ]

SHL (+D2416)2
Example: 5.27 Find the L aplace transform of &' [, ==t

Solution:

Llet jtsintdt] =L J;si_ntdt]

0 ¢t t s—os+1
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= [t (20)

N -
=21 |_,|I:-.r.'|r:|¢.',!|]

F—s+rl

B —ZT )

2 1
el

= :l.[l'rm'l 3y ]

[}
[~y

- Taatt |

= [i (tan~1oo —tan-1s) |

S s—s+1

= [i C—tants) ]
s 2 s—s+1

= [E cot™ls ]
S s—os+1

o Let Jtsﬂdt] —_1 coti(s+1)
0 ¢t s+1
Exercise: 5.3

Find the Laplacetransform of

| dine Ans.  cot-1Z
N 2
3 -2t S Ans.  cot™1(s + 2)
[
5 sinmt-sinbt Ans  cot-17 —cot-1%
r ¢ ’
gl i D
y caal Ans log ¥
e s+a
- +1
 1-e Ans  log_
& P N
6 oot J-r_;._r.i At Ans._1 cot (s + 1)
D g s+1
X 2
WP e Ans:Li
i _{llxcr.-;l‘ it ) [(sz+25+2 )2]
e L .1 2(s+1)
B, e7F | re~tsintdt Ans: -
£ j-[-, 3 1 s [SZ+ZS+2]

Evaluation of integralsusing L aplace transform
Note: (i) f,” f(De-stdt = L[f ()]
(i) J,” f(®e~dt = [LIFOI _,

(iii) J;_ fO)dt = [LIFO _,
Example: 5.28 If L[f(t)] = >

, then find the value of f0°° fodt

5244
Solution:
Given L[f(t)] =

s+2

s2+4
We know that fooo f@®dt =[LIfO1 _,
[ LZ] 2

s2+4 s=0 4
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- _1
X f(®)dt :

5s+4

Example: 5.29 If L[f(t)] = , then find the value of f0°° e-2f(t)dt

s2-9
Solution:
Given L[f(t)] = >

s2—9
We know that f0°° e~2f(0de = [LI[f(O]] _,

5s+4 _ 14

52—9 s=2 B -5
—-14

Joo e 2tf(t)dt = ___
0 5

Example: 5.30 Find the values of the following integrals using L aplace transforms:

(i) _ff te Heos2tdt (i) [ e lsintde @y [ (e-* r'_h:ildt

L
) (T etdt @ ) I::'_":'t""“]dr

Solution: i
(1l _F;” te M eps2idt = L{tcos2t],_. = [if L{msErjl

_-#II -:]I
iz Ledad

= 1-:5344]1-51'2:]]
(52 +43=

— _1'.4'!":-]
Cha g il
i4—4)
s IR
(++4)% :

(i) [} t2e~tsintdt = L[t2sint],., = ;—__:L[S””‘]:-:

el

Fwm

§=F

=565
T ds? \s24g =1

g ’—1:25'-]
_ds {2412 p=1

i =
=_EE 51*“!]
\ Em=]

= -2

IIE—'EJII 1 1—5.2-:_::!4-'. 125 |:-]
(g¥=114
s=1

_ 2 I—:a:‘”rl![lgz-r 1 |-455"-|] l

(#2+104

F=1

= =7 ﬂ]

-
#*+1} s=1

_’us"—z] _4_1
{(52+1)7 g 2

a2=1

(i) [ (f"-f"*)dr =L{°":°"‘]F_u = [[Lle~* —e*]ds]. g

4
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(o0}

[7l[L(e) — L(e~29)]ds] s=0
)

ol L
[ESE
= =+1 5+2 £=i

= {[log(s + 1) — log(s + 2)]"}s=0
|

={loo:z] ),
{1027
= {I-:rg “__} .
- _lgglz]so v logl=0
_ s+2
= [log s+1] _, = log2

(iV) J00 (1—cost) e—tdt

Pryrra I R |

[:J & qr} o=t _Jr_[’ “’"‘I ] = [T[L[{1 — cost)]ds]s,

L) - f{rﬁfr"l]m]

[ [[ 5.+1jd5]-:]

1[1&1_5& ——h-g{a + 1 |] }

R T |
{[logs—logx/s2 | }
s=1
={[log ___]"}
\/52+1 s S=1
=[0—1log_" |
Vs24+1 =1
= [log EZ+_1]
s s=1
= log\/E

Exercise: 5.4
Find the values of the following integrals using L aplace transforms
©_ 5 Ans. 2
1. J, te~*costdt v
“ te-3tsi Ans. 13
2. [, te~3tsintdt o0
[o'e) —at__ ,—b
Nl Y dt Ans log”
0 t a
oo in?
4'J e—2t 5" bt Ans. llog2
0 t 4
5 © cosat—cosbt; dt ANS: logf
0 ( t b
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L aplace transform of Piecewise continuousfunctions

Iy f(®estdt = LIf()]
Example: 5.31 Find the Laplacetransform of f(t) = eo‘t:
Solution:
LIf O] = J, f®e-sdt
= [Tetetdt+ [T e * 0cit
= f, ety

e—(s+De T e—(S+1)T[—60

—(s+1)7y (D)

~ LIf (0] =

l_e—(s+1)n

—(s+1)

sint,

Example: 5.32 Find the Laplacetransform of f(t) = 0-

Solution:
LIF(®)] = [, f()e-sdt
= [ e~ sintdt + [, e~ i

= [ e *tsintdt

g H F
—
—

(—5)8+1
=0+ (-n="""
s2+1 s2+41 s2+41
l?—fl'l__.j
FLFO] =S e e
—S S
Exercise 5.5
|. Find the Laplace transform of f{t) = in'ffij %
- L, 3
2. Find the Laplace transform of f{t) = f 'I]ﬂ_f__: T !
: i . —[L0<t<]
3. Firdd the Laplace transform of f{i) L oie>1

Second Shifting theorem

O0<t<m
t>mn

o<t<m
t>mn

Statement: If L[f(t)] = F(s),then L[f(t — a)U(t — a)] = e~ =F(s)

Proof:

0; t<a
f(t—a);t>a
By the definition of Laplace transform,

LUt —a)ft—a)] = [, Vit=aif(t—aje *dt

Ult—a)f(t—a) =

Jo 0dt + |7 f(t —a)e ™ di

Anss

L-&
71

T -5 o
— (—ssint —cost}| =—— [—ssinm — cosm] — 5"—“ [—s5in0 — cos0]
. 2

ol Il ]
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LUt — )f(t — @)] = f, e @If(x)dx
= fooo e~sae=s*f(x)dx

- Lett—a=x--(1)
= eS¢ fo e=sxf(x)dx f gt
Replace x by t dt = dx
LUt - a)f(t — )] = e=e [ e=stf(t)dt Whent = a, (1) => x = 0
= eL[f(t)] = e sF(s) When t = oo, (1) => x = o

LIU(t — a)f(t —a)] = e—saF(s)
5.5 Periodic functions

Definition: A function f(t) issaid to be periodic if f(t + T) = f(t) for al values of t and for certain values
of T. The smallest value of T for which f(t + T) = f(t) for al tis caled periodic function.

Example:
sint = sin(t + 2m) = sin(t + 4m) -+
~ sint isperiodic function with period 2.

Let f(t) beaperiodic function with period T. Then

1 T
L[f(t)] = 1——6_57"[ e-stf(t)dt
0

Problemson Laplace transform of Periodic function

0<t<a

Example: 5.36 Find the Laplacetransform of f(t) = { E
—E;a<t<2a
Solution:

The qiven %‘uncti onisaperiodic function with period T = 2a
Lif®] = e~stf(t)de

1 _19_ST é)a

= e~stf(t)dt
1—e2asJ 0
= [ aEe—stdt + 2a —FEe—stdt]

1—e—2as 0 a

= 1_6;—2115 [E Oj.a e-stdt — g-aZa G_Stdt]

E e—st_ @ e—st 2a
=m[[?] I 11
0 S a
E e—as 1 e—2as e—as
S L T TS

—2e— -2
E pl—2e”%+e™°%,

1—e—2as L s 1

_ E r(1—e—aS)2]
12_(e—a5)2 L S

_ E [(1—e—aS)21
(1—e=%9)(14e~95) s
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o E{.l_e—as:]
s (1+e™as)

« LIF®)] = F tanh (%)
s 2

1;0<t<
Example: 5.37 Find the Laplacetransform of f(t) = {-1;%
2

a
2

<t<a

Solution:

The given function is aperiodic function with period T = a

LIf(0] = —— [ e~ f(0)dt

l—r

=ﬁj§ e St )dt

= §{1Je-f*dt+j§(—1]e-“dtl

=—— | [Ze ™ dt —[a E*'”dt‘]

(1]
1 Eid got]2d
T l-pmas [ —51:. £ { -3 ]E

1 ] {I_‘g—a.i'r
S S * tanhx = —]

== (1+e2X)

~L[f(t)] = Etanh (%]

Exercise5.6

1. Find the Laplace transform of

_ L0 =t EE ) . . K as
flt) = I r = giventhat f{t +a) = f(t). Ans: -mnh{— :]
—li;st=a : 3

2. Fud 1l Laplace transtorm of

0=t =a

flr) = i'&ﬁ b in et < 2g BWenthat f(f + 2a) = f(r). Ans: Jietgmh (%)

given that f(t + a) = f(¢).
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5.6 Inverse Laplacetransform
Definition

If the Laplace transform of afunction f(t) isF(s)ie., L[f(t)] = F(s),thenf(t) iscalled an

inverse Laplace transform of F(s) and we write symbolicalyf(t) = L-1[F(s)], where L-1 is called the
inverse Laplace transform operator.

Inver se L aplacetransform of elementary functions

LIf(®)] = F(s) L[F(s)] = f(®
1 1
L[] =— L] =1
S s
[t] ! —=1
L[t] =— L1[—]=t
s2 s2
n! !
L[t"] = if nis aninteger L] ]=1tr
sntl sn+1
1 tn
L1 =__
sn+1 n!
1
Llex] = L1 ] = eat
s—a s—a
1 1
Lle—at] = —1 1= e—at
s+a s+a
[ ! a ) 1 sinat
L|sinat| = L- =
s2 + a2 s2 + a2 a
L[cosat] = L1 ] = cosat
s2 + a? s2 + a?
(sinhat] a 1 sinhat
L[sinhat] = L[ ] =
2 _ 2
s -a s — a? a
S S
L[cosat] = L1f—— ] =coshat
SZ — a2 SZ — aZ
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Result on inverse L aplacetransform
Result: 1 Linear property
L[f(®)] = F(s) and L[g(t)] = G(s), then L~*[aF(s) + bG(s)] = aL~[F(s)] + bL7[G(s)]
Whereaand b areconstants.
Proof:

We know that L[aF(s) + bG(s)] = aL[F(s)] + bL[G(s)]

=aF(s)+bG(s)

(i.e.)aF(s) £ b G(s) =Llaf(t) £ bg(t)]
Operating L—1 on both sides, we get
L-[aF(s) £ bG(s)] = af(t) + bg(t) 2« f(t) = L1[F(s)]
L=1[aF(s) £ bG(s)] = aL~1[F(s)] £ bL~1[G(s)] 2w g(t) = L1[G(s)]
Result: 2 First shifting property

(i) L1 [F(s + a) = e~*L~1[F(s)]]

(i) L-1[F(s — a) = eL-1[F(s)]]
Pr oof:
Let Lle—atf(t)] = F[s + a]
Operating L—1 on both sides, we get
e~atf(t) = L~F[s + al]
L=YF[s + a]] = e~¢L-1[F(s)]
Result: 3 Multiplication by s.
If L-1[F(s)] = f(t) and £(0) = 0, then L-1[sF(s)] =%L—1[F(s)]
Pr oof:
Weknow that L[f'(t)] = sL[f(t)] — f(0) = sF(s)
Operating L—1 on both sides, we get
f(@®©) = L7YsF(s)]
Lf() = L))
L LTF(S)] = L7sF(s)]

o L1[sF(s)] = iL—l[F(s)]

5.31



Result: 4 Division by S.
L1 f L-1[F(s)]d
Pr oof:

LIf(£)] = LF(s)

N

We know that L [jotf (dt] =

vl =

Operating L—1 on both sides ,we get
ff(t)dt =L~ 1[ F(s)]
CLUF(s)] dt = 1- LER(S)]

0 s
S LT = RG] de

Result: 5 Inverse Laplace transform of derivative
1

LAF(s)] = 2Lt [ZF(s)]
Proof:
Weknow that L[tf(t)] = ;_dL[f(t)] = ;_dF(s)
Operating L—1 on both sides ,we get
tf(t) = —L7L{ F(s)}
FE] = 2L CFE)
[0 =L ()
FE] = L CFE)
Result: 6 Inverse Laplace transform of integral
L-1[F(s)] = tL1[ [ F(s)ds]
Proof:
We know that L f(_tﬁ f L(f(0)) ds
fs F(s)ds
Operating L—1 on both sides, we get
IO — 1717 F(s) ds]
f@©) = el [ F(s) ds]
L-1[F(s)] = tL1[ [ F(s) ds]

Problemsunder inver se L aplace transfor m of elementary functions
Example: 5.39 Find theinverse Laplacefor thefollowing

s3-35747 (iv) is+5
521."“‘1

1 iF 1 4
Dz ® mm B =5
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o k=g
3

=—0 I

X ’:*:i]l
=

11 E|
- o P =
5 .'Izs “2’

=££_|-
4+

=Zsinit
<[ -a [ e 4]
L1 ["L:i] =1- 3t+}3—::

o1 5] = 3 ] + 5 =5

-1 [ 38+ ] P T SEinar

s43506 5

Exercise: 5.7

Find theinverse Laplacetransform for the following:

25-3 Ixin’§
]'_5:.,.5:' Ans:  2cos5t —
Iz 45 S
2, == Anst 3cosdt + 20—
I=+1f 4
3 Anst leinlt
4740 & Z
4 Ans: e~HE
T is+4)3 3!

X i oLt
Ay ———= s T —5n
MNemein Ans: —sindr
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Inver se using theformula

L[F(s)] = L1 [LF(s)]
t ds
Note: Thisformulais used when F(s) is cot=1 @(s) or tan—1 @(s) or log@(s)

Example: 5.41 Find theinverse Laplace transform for the following
(M) cot-1 (D) (i) tan-1 (D) (iii) cotlas
a s
(iv) tan—1(s + a)
Solution:

(i} L1 [mrl ]

[ (o ()]
IP_ )| =t [ 0)

-t ]
L= 1r'm“ {;}] = —sr.'mr
{) L1 [.!‘m:e‘l [}] = —L 11 {rnu . I[sj]:]]
- @)=

—.L 1{

&l

==

:l-h,rl

.L'llrml': ; I:—snrm‘
ﬂiii}L‘limr'lﬂs]_ et I mt'lfns]}l

= 1[,_1

[ L+a?s?

1
:iL'l i :L S
i - P ar
L a“

()| =21

5
ns [s"f+ E—lﬂl

1
o

I-Y[cot—tas] = sin=
¢ a
(iv) L-1[tan~1(s + a)] = e~ =L~ 1[tan"1s]

= pat ['Tl L1 ’;—:{mu‘ls}ﬂ

_a+ f—1 -1 i
_'E (v Fs ( [ | | 7:|
leg=
— l _-:'II! 1 [ ]
£ 1452

L1 [mr'l I:%:l] = _Fr_“rsinr
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I nver se using the formula
L[sF(s)] = Z L1[F(s)]
t

2 2
Example: 5.42 Find L-1[slog (C_*
p [slog (ﬁ]
Solution:
2 2 2 2
L-1[slog )] = L L1 [slog )] (1)
s24+h2 dt s24+h2
2 2 2 2
L~ [log C )] =11 [log ("))
s2+h2 ds s2+b2
= ' 1112 (log(s? + a?) — log(s? + b2))]
t ds
1
_ly1p 1 25— 2s
Tt L [52+a2 s24b2 ]
— __ZL—l [ s - °
Tt s24+qa? s24b2

-2
= __[cosat — cosbt]
t

=2 [cosbt — cosat]
t

Substituting in (1), we get

2 2
L-1[slog C +a )] = d_[z_[cosbt — cosat]]
s2+b? dt ¢t

(t(=bsinbt+asinat)—(cosbt—cosat)q
= 2 L 2 1

L-1[slog ( sz+a2)] _2 [t(—bsinbt+asinat)—(Cosbt—cosat)1
s2+b? © !

I nver seusing Partial Fraction
Example: 5.46 Find L-1[—=2—]
s(s+2)(s—1)
Solution:
s2 A4 B L ¢
s(s+2)(s—1) T + s+2 + s—1

__ A(s+2)(s—1)+Bs(s—1)+Cs(s+2)
o s(s+2)(s—1)

As+2)(s—1)+Bs(s—1)+Cs(s+2)=s—2-(1)
Puts =0in(1) Puts =-2in(1)
AR2)(-1) = -2 B(-2)(-3) = —4

Puts = 1in (1)
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=A=1 — __2 iC:_

) s—2 12 1

L—l _s=2 4
s(s+2)(s—1) 3 3

Example: 547 Find L-1[__ > ]
(s—1)(s—2)?

Solution:
293 _ A B c
(s—1)(-2)2  s—1  s=2 (s=2)2
__ A(s—2)*+B(s—1)(s—2)+C(s—1)
B (s—1)(s—2)?
A(s—2)’+B(s—1)(s—2)+C(s—1)=25s—3--(1)
Puts =1in(2) Puts =2in(2) Equating the coefficient of s2
A+B=0
A=-1 C=1 B=—-A =>B=1

25—3 _ —_1 1 1
S o e Y s
-1 25—3 _ ¢ ot 2
~ L [(5_1)(5_2)2 =—e +te +e't
2— p—
Example: 5.48 Find theinver se L aplace transform of 5s 15511

(s+1)(s-2)3
Solution:

552—155—11 _ A B c c
(s+1)(s—2)3 s+1  s=2  (s—2)2 (s—2)3

_ A(s—2)3+B(s+1)(s—2)%+C(s+1)(s—2)+D(s+1)

(s—D(s-2)?
As =22 +B(s+1)(s—2)>’+C(s+1)(s—2)+D(s+1) =552 —-155s — 11--- (1)
Puts =—-1in(1) Puts =2in(1) Equating the coefficient of s3
A(-27) =9 D(3) = —21 A+B=0
A=_"_=sa=" p=""=-7 B=-A=B="
-27 3 3 3

Puts =0in(1), weget
—8A+4B—-2C+D = —-11
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+i-20-7=-11

Wl >

8

3

4-20=7-11
—20=-8=>C=4

. 5s2—15s—11 -1 n 1 4 7
THD(s-2)3 T 3(s+1)  3(s-2)  (s-2)2  (s—2)3

L1 5515511 :—_1L_1[1_]+1L—1[1_]+4L_1[ e

(s+1)(s—2)3 3 s+1 3 5—2 (s—2)? (s—2)3
= et 4 12t 4 o211 [i] — 7e%t 71 [1_]
3 3 s2 s3
2_ — — 2
LI = et T2t g2t — 72t T
(s+1)(s—2)3 3 3 52 2

Exercise 5.8

Find the Inverse L aplacetransformsusing partial fraction for the following

11 Ans. 1(e—t —e-3t)
(s+1)(s+3) 2

2.1 Ans. l(e2t—2et+1)
s(s+1)(s+2) 2

5.7 Convolution theorem
Definition: Convolution of two functions
The convolution of two functions f(t) and g(t) isdenoted by f(t) * g(t) and defined by
f®) * g(®) = [, Fg(t — wdu.
State and prove Convolution theorem

Statement: If L[f()] = F(s) and L[g(t)] = G(s), then L[f(O)]*L[g(t)] = F(s)G(s)
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Proof:
Wehave £(£) * g(8) = [ fwg(t — wdu
LIF@®) * g = J; @) * g(©)] e=stdt
= f;o fotf(u)g(t — w)due—stdt
= [y I} FaDg(t — wesdudt (1)
Now we have no change the order of integration.
u=0u=tt=0t=o0
Change of order is . Draw horizontal strip PQ
AtP,t=u, At Au=o0
LIF(®) + g®] =[] [T fFwg(t — westdtdu
_ f:’ Fa [ gt — westdt]du - (2)
Put t —u=x--(3)
t=u+x=>dt=dx
Whent=u;(3) =>x =0
When t = 0;(3) > x =

D) =2 L[f(t)*g®)] = fooo fw) [fgzog(x)e—s(mx)dx]du
= °f(w)[. gx)este—sxdx]du

I I
= Loo f(we—sudu | go g(x)e=sxdx
= LIfWILlg(x)]
= LIf(®) * g(©)] = F(s)G(s)
Note: Convolution theorem is very useful to compute inverse L aplace transform of product of two terms
Convolution theoremis L[f(t) * g(t)] = F(s)G(s)

L7YF(s)G(s)] = f(t) = g(¢)
L-1F(s)G(s)] = L~Y[F(s)] * L7[G(s)]
Problems under Convolution theorem

2

(s24+a2)(s%2+b2)
Solution:
2
-1 s ] s s
L [(sz+a2)(52+b2) I=1 [(sz+a2) (s2+b?) ]

= =1 =

I.'r-'-l-n-'l] o [l__sfil:-'-ll

= cosat * cosbt

= fot cosau cosb(t — u)du
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Jt cos(au+bt— bu)+cos(au bt+bu) du

1 (cos(au + bt — bu) + cos(au — bt + bu)) du

S?[COS(CL —b)u+ bt + cos(a + b) u — bt]ldu
27J0
[Sin[(a—b)u+bt] 4 sin[(a+b)u+bt]]t
ab a+b 0

+ =

1
2
1 rsin(at—bt+bt) + sin(at—bt+bt)  sinbt | sinbty
25 ab a+b a=b ' atb
1

[sin at sin at sinbt sinbt1
2 a-b a+b a—>b a+b 1

r(a+b)smat+(a b)sinat—(a+b)sinbt+(a— b)smbt1

E a2—b?
_1 [Zasinat—stinbt]
T2 a?—bh?
__ 1 2(asinat—bsinbt)q
2 [ a?—bh? 1
2
L1 [ s ] __ asinat—bsinbt
(s24+a?)(s2+b?) a?—b?
Example: 5.58 Find the inver se L aplace transform m by using convolution theorem.
Solution:
-1 .___’._I _ -1 l_‘_ _’__.J
(=2+4)is2+9)] — 7 lis?+a) (5743)
- (gl el
(52 44] (52430
1 .
= _sin2t * cos3t
t .
= sin2u cos3(t — uw)du
270
_ 1ft sin(Qu+3t—3u)+sin(2u—3t+3u) d
779 2
= [sin(3t — u) + sin(5u — 3t)]du
2Jo
t
_ 1 r—cos(3t—u) _ Cos(Su—3t)]
4t 1 5 0
— 1 [cos(3t—t) __cos(5t—=3t)  cos3t + cos3tq
4 1 5 1 5
1 2t 3t
= _[cos2t — 7 — cos3t + 2
4 5 5
— 1 [5c052t—0052t—5c053t+cos3t-|
4 5 1
1
= _ [4cos2t — 4cos3t]
20
. L1 [ s ] __ cos2t—cos3t
(s24+4)(s2+9) 5
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Exercise: 5.10

Find the inver se L aplace transfor ms using convolution theorem for the following

1.1 . _
D Ans. 1 —cost

2. s Ans  1[™ — tcos2t]
(s2+4)2 8 2

2 .

3._s Ans. 1 [tcos2t + Slr12t|
(s2+4)2 2 2

4, 1 Ans. lle~t + sint — cost]
(s+1)(52+1) 2

5__ 1 Ans. —ie—t + icosZt — isinZt
(s+1)(s%+4) 5 5 10
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5.8 Solution of differential equation by L aplace transform technique
There are so many methods to solve a linear differential equation. If theinitial conditions are known,
then Laplace transform technique is easier to solve the differential equation. The Laplace transform
transforms the differential equation into an algebraic equation.
LIy (®)] = sLly(®)] — y(0)
Lly'®] = s2Lly(®)] — sy(0) — y'(0)
Problemsusing Partial Fraction

2
Example: 5.66 Solved * — 3 d_x+ 2x = 2, given x = 0and 9x = 5 for t = Qusing L aplace transform
dit? dt dt

method.
Solution:
Givenx" —3x' + 2x =2;x(0) =0;x'(0) =5
Taking Laplace transform on both sides, we get,
L[x"(t)] — 3L[x'(t)] + 2L[x(t)] = 2L(1)
[s2L[x(t)] — sx(0) — x'(0)] — 3[sL[x(D)] — x(0)] + 2L[x(8)] = %

Substituting x(0) = 0;x'(0) =5
[s2L[x(£)] — 0 — 5] — 3[sL[x(0)] — 0] + 2L[x(D)] = 2

S

s2L[x(t)] — 3sL[x(D)] + 2L[x(©)] = 2+ 5
s2L[x(t)] — 3sL[x(O)] + 2L[x(©)] = 2+ 5

Put L[x(t)] = x
S2F — 35T+ 28 =245

S
‘45

N

[s2 —3s+2]x

(s—1D(s—2)F=2+5
N
245s
s(s—=1)(s—2)

Consder—2s  _4, B , C
s(s—1)(s—2) s s—1 s—2

X =

2+5s __ A(s—1)(s—2)+Bs(s—2)+Cs(s—1)
sGs—1)(s-2) s(s—1)(s—2)

A(s—1)(s—2)+Bs(s—2)+Cs(s—1) =2+5s-- (1)

Puts =0in(2) Puts = 1in (1) Puts =2in(1)
A-D(-2)=2 B(1)(-1) =7 C(2)(1)=2+10
A=1 B =-7 C=6

2455 _ 17 | 6

s(s—1)(s—2) s os—1 s—2
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cx=t-7"1 46 b

s s—1 s—2

x(t) =1—7et + 6e2t
Example: 5.67 Using L aplace transform solve the differential equationy” — 3y — 4y = 2e-t,
withy(0) =1 =y'(0).
Solution:
Giveny” — 3y — 4y = 2e-t; withy(0) = 1 = y'(0).
Taking Laplace transform on both sides, we get,
Ly'(®] — 3Ly’ (O] — 4Lly(©)] = 2L(e™®)
[s2LLy(6)] — sy(0) — y'(0)] = 3[sL[y(t)] — y(0)] — 4L[y(D] = 2 —

s+1
Substituting y(0) = 1 = y'(0).
2
[s2Lly(©)] —s — 1] = 3[sL[y()] — 1] = 4L[y(D)] = —
N
s2L[y()] — s — 1 — 3sL[y(O)] + 3 — 4L[y()] = 2
s+1
2
stLly(®)] — 3sLly(®)] — 4L[y(®)] = —+s5-2
S
PutLy(t)] =7y
2
$Zy=3sy—4y= — 452
s+1
[s2—3s—4]y= 2—+s—2
s+1
2 _ 3¢ 4ly= st 2(sHD)
[s* —3s—4]y= eI
_ 2+45%+s—25-2
o s+1
— SZ—S
s+1D(s—4)y=
s+1
- SZ—S
Y= DG4
- SZ—S
Y= (s+1)2(s—4)
. 2_s _ A B C_
Consider Tl s+l + or? e
s2—s _ A(s+1)(s—4)+B(s—4)+C(s+1)?
(s+1)2(s—4) (s+1)2(s—4)
As+1)(s—4)+B(s—4)+C(s+1)?=52—5--(1)
Puts = —-11in(1) Puts = 4 in (1) equating the coefficients ofsZ, we get
12
—5B=1+1 25C = 16 — 4 A+C:1:>A:1—C:>1—£
— =2 12 -1
B = 5 ¢= 25 A= 25

s%—s _ 25 2 412
(s+1)2(s—4)  25(s+1)  5(s+1)?2 ' 25(s—4)
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i 132 1
Y= 25(s+1)  5(s+1)2 = 25(s—4)

y@®) =2 =t L+ Zr
25 (s+1) 5 (s+1)2 25 s—4
y(t) = Bet_Ztet + 2ot
25 5 25

Example: 5.68 Solve the differential equationd” — 3% + 2y = e, withy(0) = 1 and y'(0) = Ousing

dt? dt
L aplacetransform.
Solution:
Giveny” — 3y' + 2y = e~t; withy(0) = 1 and y'(0) = 1.
Taking Laplace transform on both sides, we get,
Lly'®] = 3Ly (O] + 2L[y(®)] = L(e™)
1

[s2L[y(D)] — sy(0) — y'(0)] — 3[sLy(D)] — y(0)] + 2L[y(D)] = —

Substituting y(0) = 1 and y'(0) = 0.

[s2L[y(t)] — s — 0] = 3[sLLy(t)] — 1] + 2L[y(t)] = %

s2LIy()] — s — 3sLly(©)] + 3 + 2L[y(H)] = %

s2LIy(t)] — 3sLly()] + 2L[y(t)] = % ts—3

PutLly(t)] =7y
_ _ 1
SZYy=3sy+2y= " — 453
s+1

[s2—=3s+2]y= 453
s+1

2 —  1+4s(s+1)—3(s+1)
[s*—3s+2]y= —
__ 1+s%+s—35-3
- s+1
2 e
(s—D(s—2)y="22
s+1
- §2—25-2
Y= (s+1)(s—1)(s—2)
2_oe_
Consider __s #7%2 _ A B, C
(s+1D)(s—1)(s—2) s+1 s—1 s—2
§2—25—2 _ A(s=1)(s—2)+B(s+1)(s—2)+C(s+1)(s—1)
G+D)(-1(-2) (s+1)(s—1)(s—2)

As—1)(—-2)+BG+1D)(s—2)+C(s+1)(s—1)=s2—25— 2

Puts = —11in (1) puts = 1in (1) puts = 2 in (1)
6A=14+2-2 —-2B=1-4 3C=4—-4-2
A=1 B=2 c=22
6 2 3
. 52—25-2 1 3 2
Us+D(s-D(s—2)  6(s+1)  2(s—1)  3(s—2)
_ 1 3 2

Y= e+ 26— 3(-2)

€y

5.43



y) =11+ =

6 (s+1) 2 s—1 3 s—2
1 3 2

y(t)=_et+ _et —_e
6 2 3

Example: 5.69 Using L aplace transform solve the differential equationy” + 2y' — 3y = sint,
withy(0) = y'(0) = 0.
Solution:
Giveny” + 2y — 3y = sint withy(0) = 0 = y'(0).
Taking Laplace transform on both sides, we get,
LIy"(®)] + 2L[y' ()] — 3L[y()] = L(sint)

[s2LLy(B)] — sy(0) — ¥'(0)] + 2[sLIy(®)] — y(0)] = 3L[y(O)] = _

s2+1
Substituting y(0) = 0 = y'(0).
1
[s2L[y(©)] = 0 — 0] + 2[sL[y(t)] — 0] — 3L[y(8)] = o
S
1
s2Lly(O)] + 2sL[y(8)] — 3L[y(D)] = ol
S
1
s2Lly(®)] + 2sL[y(®)] — 3L[y(®)] = ol
S

PutLly(t)] ="y
ST 25— 3y=

s2+1
[s2+2s5—-3]y= !

s2+1

(s—D(s+3)y= !

s2+41

_ 1

(s—1)(s+3)(s2+1)

Consider 1 A LB L sHD
(s—1D)(s+3)(s2+1) s—1  s+3  s%+1
1 _ A(s2+1)(s+3)+B(s—1)(s%+1)+(Cs+D) (s—1)(s+3)
(s—1)(s+3)(s2+1) (s—=1)(s+3)(s2+1)
A2+ 1)(s+3)+B(s—1)(s?+ 1)+ (Cs+D)(s—1D(s+3)=1--(1)
Puts =1in(2) Put s =—-3in (1) equating the coefficients ofs2, we get
84=0+1 B(-4)(10)=1 | A+B+C=0=>C=-A-B=__+_1
8 40
A=1 p=21 c=2=1
8 40 10

Puts = 0in (1), we get
34—B-3D=1=>4+1_3D=1

8 40
3 1
3D="_+_-1
8 40
-1
15+1—40 —24 _
40 40%3 5
-1 1
1 _ 1 1 Gs—<

(s—=D(s+3)(s2+1)  8(s—1)  40(s+3) s24+1
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- 1 1 s 1

YT BG—D) | 40(s43)  10(241)  5(s2+1)

1 1 1 1 1 1 1
y(©) =_L[___]—_ L[ ]-_L[ ]-_L[_]

8 (s—1) 40 s+3 10 s24+1 5 s2+1
y(t) = let — 1ot — 1_(cost — 2sint)

8 40 10

Example: 5.70 Using L aplace transform solve the differential equationy” — 3y + 2y = 4e2t,
withy(0) = —3 and y'(0) = 5.
Solution:

Giveny"” — 3y' + 2y = 4e2t; withy(0) = —3 andy'(0) = 5.
Taking Laplace transform on both sides, we get,

Ly"(®] = 3Ly (O] + 2L[y()] = 4L(e*)

[s2LLy(6)] — sy(0) — y'(0)] — 3[sLIy(t)] — y(0)] + 2L[y(D)] = 4 _

s—2

Substitutingy(0) = —3 and y'(0) = 5.
[s2L[y(£)] + 3s — 5] — 3[sLIy(t)] + 3] + 2L[y(t)] = g

s2L[y(t)] + 3s — 5 — 3sL[y()] — 9 + 2L[y(®)] = %

s?Lly(0)] — 3sLly()] + 2L[y(t)] = iz _3s+14

-
PutLly(t)] ="y

_ _ 4
s7y=-3sy+2y=  — 35414

-
_ 4
[s2—3s+2]y= — +14-3s

-

[s2—3s+2]y= 4+—(14_3:‘_)2(s_2)

(S _ 1)(5 _ Z)Ty: 4+(14-s—_3;‘)(s—2)
=, 4+(14-3s)(s—2)
(s—1)(s—2)2
4+(14-3s)(s—2) _ A

. B C
Consider (s—1)(s—2)2  s—1 Tt (s—2)2

4+(14-3s)(s—2) _ A(s—2)%+B(s—1)(s—2)+C(s—1)

(s—1)(s—2)? (s—1)(s—2)?
A(s —2)>+B(s—1(s—2)+C(s—1)=4+14-35)(s—2)-- (D)

Puts =1in(2) Puts = 2in (1) equating the coefficients of sz, we get
A=4-11 C=4+0 A+B=-3=-74+B=-3
A=-7 Cc=4 B =4
%: =t :7+ (s—42)2
sy=_"+"+_"*

s—=1  s=2  (s=2)?
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y(©) = —Tet + 4e% + 42 L7 [ ]
y(t) = —7et + 4e?t + 4ett
Example: 5.71 Using L aplace transform solve the differential equation y” — 4y’ + 8y = e2t,
withy(0) = 2 and y'(0) = —2.
Solution:
Giveny" — 4y' + 8y = e2t; withy(0) = 2 andy'(0) = —2.
Taking Laplace transform on both sides, we get,
Lly"(®] — 4Ly (O] + 8L[y(D)] = L(e?)
[s2LLy(D)] = 5y(0) = ¥ (0)] = 4sLLy(D)] - y(O)] + 8Ly(®)] = —

Substituting y(0) = 2 andy'(0) = —2.
[s2L[y(£)] — 25 + 2] — 4[sL[y(t)] — 2] + 8L[y(t)] = 5172

s2L[y()] — 2s + 2 — 4sL[y(t)] + 8 + 8L[y(?)] = %2
1

s2LIy(0)] - 4sLly(@®)] + BLy(®)] = L

+2s—10
PutLy(t)] = Ty
S P =457+ B =—+ 25~ 10

[s* =45+ 8]y =—+25-10

1+( 25— 1AM s—2}

[s5 =45+ 8]¥ = —3

21 1+ 25—10) 221
'|_.| e =
(5— 2 sf—4s5+3)

Lo I+ 2s—10s—2}

L+E25—10115-2 A Big—2)+C
Consider ——=- ‘= + '

=
s-2ir—23%+4]  s5-Z  {r-23%+4

_ Al{a—ZF 4+ Bfa—Z)rC] (a2

fs—E)[{s—2)=+4]

Al(s=2)2 + 4] +B[(s = 2) + Cl(s = 2) = 1 + (25 — 10)(s — 2) -+ (1)

Puts =2in(1) Puts=0in (1) equating the coefficients ofs2, we get
1
4A=1+0 8A+ 4B —2C =21 A+B=2=>Z+B=2
a=! C =—-6 B=_
4 4
1 7
1+(25-10)(s=2) _ 3 -(s—2)-6
(s=2)[(s—2)?+4] s=2 T (s—2)%+4
STy 1 L7 62 —6 1
4(s=2) 4 (s—2)%+4 (s—2)%+4
y@© =101y 7 6D -6t
4 (s-2) 4 (s—2)%+4 (s—2)%+4
— 1 g2 + 7 g2t -1 [ L] — 6e2t],—1 [1_]
4 4 s2+4 s2+4
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1 7 sin2t
=_e% 4+ e%cos2t — 6e*t
4 4 2

1 .
y(t) =_e? + 7 e2tcos2t — 3etsin2t
4 4

Problemswithout using Partial Fraction

2
Example: 5.72 Solve using L aplace transform ¥ _ Zd_x +x=et,withx=29%=—-1att=0
dt? dt dt

Solution:
Givenx" —2x' + x = et; x(0) = 2;x'(0) = —1
Taking Laplace transform on both sides, we get,
LIx"(©)] — 2L[x'(©)] + L[x()] = L(eH)
[s2L[x()] — sx(0) — x'(0)] — 2[sL[x(0)] — x(0)] + L[x()] = Si—l

Substituting x(0) = 2; x'(0) = —1
[s2L[x(t)] — 25 + 1] — 2[sL[x(£)] — 2] + L[x(£)] = Ll

s2Lx(6)] — 2sL[x(D)] + L[x(D)] = % +2s—5
s2L[x(6)] — 2sL[x(D)] + L[x(D)] = % +2s—5

Put L[x(t)] = x

S% — 25k +X=_ {9¢_5
s—1

[52—25+1]9E=$+25_5
(s—1)2k=_L t25-5
s—1

x(t) = 1t | 2| + 2L

e N

] _|'-||-..|
|:-l:-'| e

=

= ettt [4] 20 2] =i &

B 1i

- :i;': s o [l ! — Gt
T L -{I ['.—--'-+_:.-l|:'l CL

B Mg p=1 1 ¢
pf — 4 2ot 4 2eff? [—] - el
2l 5

¢

+ 20"+ 2"t — Ge't

ul"'_

i

-
T r++ Elﬂ'r ==, 3|1'-f'
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Exercise: 5.11
2
1. Solve using Laplace transform 4~ + 4dl— 5y =5, giventhat =0, = 2whent =0

dt? dt dt
Ans—1 —e-5t + et
6 6
2. Using Laplace transform solve the differential equation y” + 5y + 6y = 2, with
y(0) = 0 = y'(0). Wherey' = c;lt Ans.y(t) = % —e 2t 4 de—“

3. Using Laplace transform solve the differential equation y” + 4y’ + 3y = e—t, with

y(0) =1; y'(0) = 0. Ansy(t) = Tlest — et 4 Lot
4 4 2

2
4. Solve using Laplace transform ¢ + y = sint given=1 4 = 0 whent = 0
dt? dt

Ans.y(t) = sint — tcost

2
5. Solve using Laplace transform” 4+ 9y = cos2t, if y(0) =1 ;y (") = -1
dt2 2

Ansy(t) = 1[c052t + 4cos3t + 4sin3t]
5
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